IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1829-d523882.html
   My bibliography  Save this article

Radio Frequency Based Wireless Charging for Unsupervised Clustered WSN: System Implementation and Experimental Evaluation

Author

Listed:
  • Ala’ Khalifeh

    (Department of Electrical Engineering, German Jordanian University, Amman 11180, Jordan)

  • Mai Saadeh

    (Department of Electrical Engineering, German Jordanian University, Amman 11180, Jordan)

  • Khalid A. Darabkh

    (Department of Computer Engineering, The University of Jordan, Amman 11942, Jordan)

  • Prabagarane Nagaradjane

    (Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu 603110, India)

Abstract

Wireless Charging (WC) is a promising technology that has recently attracted the research community and several companies. WC has a myriad of advantages and diverse applications especially in the emerging Internet of Things (IoT) and Wireless Sensor Networks (WSNs), where energy harvesting and conservation are very crucial to prolonging network lifetime. Several companies have launched WC products and solutions and made them available to the end-users. This paper provides experimental and practical insights about this technology utilizing off-the-shelf (commercially available) products provided by Powercast Inc.; a pioneering company that has made their wireless charging kits and solutions available to the research and academic communities. In addition, a theoretical study of this technology is presented, where a close match between the theoretical and practical results is demonstrated. This will in turn assist the learners and technology adopters to better understand the technology and adopt it in various application scenarios. Furthermore, the paper presents the potential of using WC in unsupervised clustered WSN, where the Cluster Head (CH) node is proposed to be a mobile Unmanned Ground Vehicle (UGV) equipped with a wireless charging station. The UGV position is chosen to be in the centroid of the cluster in order to ensure that wireless charging takes place in the context of the cluster nodes efficiently.

Suggested Citation

  • Ala’ Khalifeh & Mai Saadeh & Khalid A. Darabkh & Prabagarane Nagaradjane, 2021. "Radio Frequency Based Wireless Charging for Unsupervised Clustered WSN: System Implementation and Experimental Evaluation," Energies, MDPI, vol. 14(7), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1829-:d:523882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carolina Del-Valle-Soto & Carlos Mex-Perera & Juan Arturo Nolazco-Flores & Ramiro Velázquez & Alberto Rossa-Sierra, 2020. "Wireless Sensor Network Energy Model and Its Use in the Optimization of Routing Protocols," Energies, MDPI, vol. 13(3), pages 1-33, February.
    2. Carolina Del-Valle-Soto & Ramiro Velázquez & Leonardo J. Valdivia & Nicola Ivan Giannoccaro & Paolo Visconti, 2020. "An Energy Model Using Sleeping Algorithms for Wireless Sensor Networks under Proactive and Reactive Protocols: A Performance Evaluation," Energies, MDPI, vol. 13(11), pages 1-31, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Douglas de Farias Medeiros & Cleonilson Protasio de Souza & Fabricio Braga Soares de Carvalho & Waslon Terllizzie Araújo Lopes, 2022. "Energy-Saving Routing Protocols for Smart Cities," Energies, MDPI, vol. 15(19), pages 1-19, October.
    2. Paweł Dymora & Mirosław Mazurek & Krzysztof Smalara, 2021. "Modeling and Fault Tolerance Analysis of ZigBee Protocol in IoT Networks," Energies, MDPI, vol. 14(24), pages 1-21, December.
    3. Mohammad Reza Ghaderi & Vahid Tabataba Vakili & Mansour Sheikhan, 2021. "Compressive sensing-based energy consumption model for data gathering techniques in wireless sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 77(1), pages 83-108, May.
    4. Krzysztof Przystupa & Julia Pyrih & Mykola Beshley & Mykhailo Klymash & Andriy Branytskyy & Halyna Beshley & Daniel Pieniak & Konrad Gauda, 2021. "Improving the Efficiency of Information Flow Routing in Wireless Self-Organizing Networks Based on Natural Computing," Energies, MDPI, vol. 14(8), pages 1-24, April.
    5. Piotr Arabas & Andrzej Sikora & Wojciech Szynkiewicz, 2021. "Energy-Aware Activity Control for Wireless Sensing Infrastructure Using Periodic Communication and Mixed-Integer Programming," Energies, MDPI, vol. 14(16), pages 1-17, August.
    6. Paolo Visconti & Nicola Ivan Giannoccaro & Roberto de Fazio, 2021. "Special Issue on Electronic Systems and Energy Harvesting Methods for Automation, Mechatronics and Automotive," Energies, MDPI, vol. 14(23), pages 1-5, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1829-:d:523882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.