IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1606-d516643.html
   My bibliography  Save this article

Performance Improvement Plan of Air Circulation-Type Solar Heat-Storage System Using Ventilated Cavity of Roof

Author

Listed:
  • Haksung Lee

    (Faculty of Human-Environment Studies, Kyushu University, Fukuoka 819-0395, Japan)

  • Akihito Ozaki

    (Faculty of Human-Environment Studies, Kyushu University, Fukuoka 819-0395, Japan)

  • Younhee Choi

    (Faculty of Human-Environment Studies, Kyushu University, Fukuoka 819-0395, Japan)

  • Muhammad Iqbal

    (Graduate School of Human-Environment Studies, Kyushu University, Fukuoka 819-0395, Japan)

Abstract

Indoor solar-heating systems that use ventilated roofs have drawn attention in recent years. The effectiveness and efficiency of such air-heating systems vary depending on the design and operation methods. In Japan, by introducing outside air into a ventilated roof cavity and circulating the air indoors, systems that simultaneously obtain ventilation, solar heating, and heat-storage effects have been actively developed. The conventional systems intake a large volume of outside air to increase the solar heat collection effect. However, there is a risk of heat loss and over-drying when a large amount of cold dry air during winter is introduced. In this paper, plans are presented for improving these solar heating and heat-storage effects by preventing over-drying using indoor air circulation via ventilated cavities in the roof and indoor wall. By comparing the results of the proposed system with those of the conventional system via numerical simulation, the heating load is found to be reduced by 50% or more by circulating indoor air to the ventilated roof and storing the heat in the indoor wall. Moreover, an increased relative humidity of approximately 10% was confirmed by reducing the intrusion of the outside air and keeping the moisture indoors.

Suggested Citation

  • Haksung Lee & Akihito Ozaki & Younhee Choi & Muhammad Iqbal, 2021. "Performance Improvement Plan of Air Circulation-Type Solar Heat-Storage System Using Ventilated Cavity of Roof," Energies, MDPI, vol. 14(6), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1606-:d:516643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Haksung & Ozaki, Akihito, 2018. "Sensitivity analysis for optimization of renewable-energy-based air-circulation-type temperature-control system," Applied Energy, Elsevier, vol. 230(C), pages 317-329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yulu & Lee, Haksung & Ozaki, Akihito & Choi, Younhee & Arima, Yusuke, 2024. "Experimental and numerical investigation of integrating energy recovery ventilation into a thermodynamic-potential-based passive dehumidification system using renewable energy," Energy, Elsevier, vol. 289(C).
    2. María M. Villar-Ramos & Iván Hernández-Pérez & Karla M. Aguilar-Castro & Ivett Zavala-Guillén & Edgar V. Macias-Melo & Irving Hernández-López & Juan Serrano-Arellano, 2022. "A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings," Energies, MDPI, vol. 15(17), pages 1-31, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1606-:d:516643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.