IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p826-d493761.html
   My bibliography  Save this article

Progress for On-Grid Renewable Energy Systems: Identification of Sustainability Factors for Small-Scale Hydropower in Rwanda

Author

Listed:
  • Geoffrey Gasore

    (African Center of Excellence in Energy for Sustainable Development, University of Rwanda, Avenue de l’ Armée, P.O. Box 3900, Kigali, Rwanda)

  • Helene Ahlborg

    (Division of Environmental Systems Analysis, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

  • Etienne Ntagwirumugara

    (African Center of Excellence in Energy for Sustainable Development, University of Rwanda, Avenue de l’ Armée, P.O. Box 3900, Kigali, Rwanda)

  • Daniel Zimmerle

    (Energy Institute, Colorado State University, 430 N. College Avenue, Fort Collins, CO 80524, USA)

Abstract

In Rwanda, most small-scale hydropower systems are connected to the national grid to supply additional generation capacity. The Rwandan rivers are characterized by low flow-rates and a majority of plants are below 5 MW generation capacity. The purpose of this study is to provide a scientific overview of positive and negative factors affecting the sustainability of small-scale hydropower plants in Rwanda. Based on interviews, field observation, and secondary data for 17 plants, we found that the factors contributing to small-scale hydropower plant sustainability are; favorable regulations and policies supporting sale of electricity to the national grid, sufficient annual rainfall, and suitable topography for run-of-river hydropower plants construction. However, a decrease in river discharge during the dry season affects electricity production while the rainy season is characterized by high levels of sediment and soil erosion. This shortens turbine lifetime, causes unplanned outages, and increases maintenance costs. Further, there is a need to increase local expertise to reduce maintenance cost. Our analysis identifies environmental factors related to the amount and quality of water as the main current problem and potential future threat to the sustainability of small-scale hydropower. The findings are relevant for energy developers, scholars, and policy-makers in Rwanda and East Africa.

Suggested Citation

  • Geoffrey Gasore & Helene Ahlborg & Etienne Ntagwirumugara & Daniel Zimmerle, 2021. "Progress for On-Grid Renewable Energy Systems: Identification of Sustainability Factors for Small-Scale Hydropower in Rwanda," Energies, MDPI, vol. 14(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:826-:d:493761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Terrapon-Pfaff, Julia & Dienst, Carmen & König, Julian & Ortiz, Willington, 2014. "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1-10.
    2. Gunther Bensch & Jochen Kluve & Jörg Peters, 2011. "Impacts of rural electrification in Rwanda," Journal of Development Effectiveness, Taylor & Francis Journals, vol. 3(4), pages 567-588, December.
    3. Pigaht, Maurice & van der Plas, Robert J., 2009. "Innovative private micro-hydro power development in Rwanda," Energy Policy, Elsevier, vol. 37(11), pages 4753-4760, November.
    4. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    5. Ilskog, Elisabeth & Kjellström, Björn, 2008. "And then they lived sustainably ever after?--Assessment of rural electrification cases by means of indicators," Energy Policy, Elsevier, vol. 36(7), pages 2674-2684, July.
    6. Fidele Karamage & Chi Zhang & Felix Ndayisaba & Hua Shao & Alphonse Kayiranga & Xia Fang & Lamek Nahayo & Enan Muhire Nyesheja & Guangjin Tian, 2016. "Extent of Cropland and Related Soil Erosion Risk in Rwanda," Sustainability, MDPI, vol. 8(7), pages 1-19, June.
    7. Alexandros Korkovelos & Dimitrios Mentis & Shahid Hussain Siyal & Christopher Arderne & Holger Rogner & Morgan Bazilian & Mark Howells & Hylke Beck & Ad De Roo, 2018. "A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henry Bory & Jose L. Martin & Iñigo Martinez de Alegria & Luis Vazquez, 2021. "Effect of Symmetrically Switched Rectifier Topologies on the Frequency Regulation of Standalone Micro-Hydro Power Plants," Energies, MDPI, vol. 14(11), pages 1-21, May.
    2. Geoffrey Gasore & Arthur Santos & Etienne Ntagwirumugara & Daniel Zimmerle, 2023. "Sizing of Small Hydropower Plants for Highly Variable Flows in Tropical Run-of-River Installations: A Case Study of the Sebeya River," Energies, MDPI, vol. 16(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-González, A. & Ferrer-Martí, L. & Domenech, B., 2019. "Long-term sustainability assessment of micro-hydro projects: Case studies from Venezuela," Energy Policy, Elsevier, vol. 131(C), pages 120-130.
    2. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Formative evaluation of sustainability in rural electrification programs from a management perspective: A case study from Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 95-109.
    3. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    4. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    5. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Sustainability and design assessment of rural hybrid microgrids in Venezuela," Energy, Elsevier, vol. 159(C), pages 229-242.
    6. Ana María González & Harrison Sandoval & Pilar Acosta & Felipe Henao, 2016. "On the Acceptance and Sustainability of Renewable Energy Projects—A Systems Thinking Perspective," Sustainability, MDPI, vol. 8(11), pages 1-21, November.
    7. Muhamad Alhaqurahman Isa & Priana Sudjono & Tatsuro Sato & Nariaki Onda & Izuki Endo & Asari Takada & Barti Setiani Muntalif & Jun’ichiro Ide, 2021. "Assessing the Sustainable Development of Micro-Hydro Power Plants in an Isolated Traditional Village West Java, Indonesia," Energies, MDPI, vol. 14(20), pages 1-13, October.
    8. Yadoo, Annabel & Cruickshank, Heather, 2012. "The role for low carbon electrification technologies in poverty reduction and climate change strategies: A focus on renewable energy mini-grids with case studies in Nepal, Peru and Kenya," Energy Policy, Elsevier, vol. 42(C), pages 591-602.
    9. Elizabeth Baldwin & Jennifer N. Brass & Sanya Carley & Lauren M. MacLean, 2015. "Electrification and rural development: issues of scale in distributed generation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 196-211, March.
    10. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    11. Fasipe, O.A. & Izinyon, O.C. & Ehiorobo, J.O., 2021. "Hydropower potential assessment using spatial technology and hydrological modelling in Nigeria river basin," Renewable Energy, Elsevier, vol. 178(C), pages 960-976.
    12. Lorafe Lozano & Evelyn Taboada, 2021. "Applying User-Perceived Value to Determine Motivators of Electricity Use in a Solar Photovoltaic Implementation in a Philippine Island," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    13. Terrapon-Pfaff, Julia & Gröne, Marie-Christine & Dienst, Carmen & Ortiz, Willington, 2018. "Impact pathways of small-scale energy projects in the global south – Findings from a systematic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 84-94.
    14. Poudel, B. & Parton, K. & Morrison, M., 2022. "The drivers of the sustainable performance of renewable energy-based mini-grids," Renewable Energy, Elsevier, vol. 189(C), pages 1206-1217.
    15. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    16. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    17. Albert Poponi Maniraho & Richard Mind’je & Wenjiang Liu & Vincent Nzabarinda & Patient Mindje Kayumba & Lamek Nahayo & Adeline Umugwaneza & Solange Uwamahoro & Lanhai Li, 2021. "Application of the Adapted Approach for Crop Management Factor to Assess Soil Erosion Risk in an Agricultural Area of Rwanda," Land, MDPI, vol. 10(10), pages 1-24, October.
    18. Obsa Urgessa Ayana & Jima Degaga, 2022. "Effects of rural electrification on household welfare: a meta-regression analysis," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 69(2), pages 209-261, June.
    19. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    20. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:826-:d:493761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.