IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p672-d488885.html
   My bibliography  Save this article

Double-Layer Metal Foams for Further Heat Transfer Enhancement in a Channel: An Analytical Study

Author

Listed:
  • Sinem Donmus

    (Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu-shi 432-8561, Japan
    Toshiba Carrier Corporation, 336 Tadehara, Fuji 416-0931, Japan)

  • Moghtada Mobedi

    (Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu-shi 432-8561, Japan
    Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu-shi 432-8561, Japan)

  • Fujio Kuwahara

    (Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu-shi 432-8561, Japan
    Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu-shi 432-8561, Japan)

Abstract

A local thermal non-equilibrium analysis of heat and fluid flow in a channel fully filled with aluminum foam is performed for three cases: (a) pore density of 5 PPI (pore per inch), (b) pore density of 40 PPI, and (c) two different layers of 5 and 40 PPI. The dimensionless forms of fully developed heat and fluid flow equations for the fluid phase and heat conduction equation for the solid phase are solved analytically. The effects of interfacial heat transfer coefficient and thermal dispersion conductivity are considered. Analytical expressions for temperature profile of solid and fluid phases, and also the channel Nusselt number ( N u H ) are obtained. The obtained results are discussed in terms of the channel-based Reynolds number ( R e H ) changing from 10 to 2000, and thickness ratio between the channel height and sublayers. The Nusselt number of the channel with 40 PPI is always greater than that of the 5 PPI channel. It is also greater than the channel with two-layer aluminum foams until a specific Reynolds number then the Nusselt number of the channel with two-layer aluminum foams becomes greater than the uniform channels due to the higher velocity in the outer region and considerable increase in thermal dispersion.

Suggested Citation

  • Sinem Donmus & Moghtada Mobedi & Fujio Kuwahara, 2021. "Double-Layer Metal Foams for Further Heat Transfer Enhancement in a Channel: An Analytical Study," Energies, MDPI, vol. 14(3), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:672-:d:488885
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamel Hooman & Xiaoxue Huang & Fangming Jiang, 2017. "Solar-Enhanced Air-Cooled Heat Exchangers for Geothermal Power Plants," Energies, MDPI, vol. 10(10), pages 1-10, October.
    2. Ali J. Chamkha & Sina Sazegar & Esmael Jamesahar & Mohammad Ghalambaz, 2019. "Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids," Energies, MDPI, vol. 12(3), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trilok G & Kurma Eshwar Sai Srinivas & Devika Harikrishnan & Gnanasekaran N & Moghtada Mobedi, 2022. "Correlations and Numerical Modeling of Stacked Woven Wire-Mesh Porous Media for Heat Exchange Applications," Energies, MDPI, vol. 15(7), pages 1-25, March.
    2. Jadhav, Prakash H. & Gnanasekaran, N. & Mobedi, Moghtada, 2023. "Analysis of functionally graded metal foams for the accomplishment of heat transfer enhancement under partially filled condition in a heat exchanger," Energy, Elsevier, vol. 263(PA).
    3. Trilok G & N Gnanasekaran & Moghtada Mobedi, 2021. "Various Trade-Off Scenarios in Thermo-Hydrodynamic Performance of Metal Foams Due to Variations in Their Thickness and Structural Conditions," Energies, MDPI, vol. 14(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pulin Cao & Hongchun Shu & Bo Yang & Na An & Dalin Qiu & Weiye Teng & Jun Dong, 2018. "Voltage Distribution–Based Fault Location for Half-Wavelength Transmission Line with Large-Scale Wind Power Integration in China," Energies, MDPI, vol. 11(3), pages 1-22, March.
    2. Nguyen, Truong Khang & Usman, Muhammad & Sheikholeslami, M. & Haq, Rizwan Ul & Shafee, Ahmad & Jilani, Abdul Khader & Tlili, I., 2020. "Numerical analysis of MHD flow and nanoparticle migration within a permeable space containing Non-equilibrium model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Tayebi, Tahar & Chamkha, Ali J. & Ă–ztop, Hakan F. & Bouzeroura, Lynda, 2022. "Local thermal non-equilibrium (LTNE) effects on thermal-free convection in a nanofluid-saturated horizontal elliptical non-Darcian porous annulus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 124-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:672-:d:488885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.