IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p461-d481445.html
   My bibliography  Save this article

Decomposition Analysis of the Evolution of the Local Energy System as a Tool to Assess the Effect of Local Actions: Methodology and Example of Malmö, Sweden

Author

Listed:
  • Isabel Azevedo

    (Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Faculty of Engineering of University of Porto (FEUP), Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal)

  • Vítor Leal

    (Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Faculty of Engineering of University of Porto (FEUP), Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal)

Abstract

This paper proposes the use of decomposition analysis to assess the effect of local energy-related actions towards climate change mitigation, and thus improve policy evaluation and planning at the local level. The assessment of the impact of local actions has been a challenge, even from a strictly technical perspective. This happens because the total change observed is the result of multiple factors influencing local energy-related greenhouse gas (GHG) emissions, many of them not even influenced by local authorities. A methodology was developed, based on a recently developed decomposition model, that disaggregates the total observed changes in the local energy system into multiple causes/effects (including local socio-economic evolution, technology evolution, higher-level governance frame and local actions). The proposed methodology, including the quantification of the specific effect associated with local actions, is demonstrated with the case study of the municipality of Malmö (Sweden) in the timeframe between 1990 and 2015.

Suggested Citation

  • Isabel Azevedo & Vítor Leal, 2021. "Decomposition Analysis of the Evolution of the Local Energy System as a Tool to Assess the Effect of Local Actions: Methodology and Example of Malmö, Sweden," Energies, MDPI, vol. 14(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:461-:d:481445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angel Hsu & Jonas Tan & Yi Ming Ng & Wayne Toh & Regina Vanda & Nihit Goyal, 2020. "Performance determinants show European cities are delivering on climate mitigation," Nature Climate Change, Nature, vol. 10(11), pages 1015-1022, November.
    2. Millard-Ball, Adam, 2012. "Do city climate plans reduce emissions?," Journal of Urban Economics, Elsevier, vol. 71(3), pages 289-311.
    3. Krishnamurthy, Chandra Kiran B. & Kriström, Bengt, 2015. "A cross-country analysis of residential electricity demand in 11 OECD-countries," Resource and Energy Economics, Elsevier, vol. 39(C), pages 68-88.
    4. Unander, Fridtjof & Ettestol, Ingunn & Ting, Mike & Schipper, Lee, 2004. "Residential energy use: an international perspective on long-term trends in Denmark, Norway and Sweden," Energy Policy, Elsevier, vol. 32(12), pages 1395-1404, August.
    5. Lin, Jianyi & Cao, Bin & Cui, Shenghui & Wang, Wei & Bai, Xuemei, 2010. "Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China," Energy Policy, Elsevier, vol. 38(9), pages 5123-5132, September.
    6. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    7. de Melo, Conrado Augustus & Jannuzzi, Gilberto de Martino & Ferreira Tripodi, Aline, 2013. "Evaluating public policy mechanisms for climate change mitigation in Brazilian buildings sector," Energy Policy, Elsevier, vol. 61(C), pages 1200-1211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vítor Leal, 2021. "Buildings Energy Efficiency and Innovative Energy Systems," Energies, MDPI, vol. 14(16), pages 1-5, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azevedo, I. & Leal, V., 2021. "A new model for ex-post quantification of the effects of local actions for climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Jens Ewald & Thomas Sterner & Eoin Ó Broin & Érika Mata, 2021. "Saving energy in residential buildings: the role of energy pricing," Climatic Change, Springer, vol. 167(1), pages 1-20, July.
    3. Azevedo, Isabel & Leal, Vítor M.S., 2017. "Methodologies for the evaluation of local climate change mitigation actions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 681-690.
    4. Azevedo, Isabel & Horta, Isabel & Leal, Vítor M.S., 2017. "Analysis of the relationship between local climate change mitigation actions and greenhouse gas emissions – Empirical insights," Energy Policy, Elsevier, vol. 111(C), pages 204-213.
    5. Isabel Azevedo & Vítor Leal, 2020. "Factors That Contribute to Changes in Local or Municipal GHG Emissions: A Framework Derived from a Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-47, June.
    6. Dorothée Charlier & Sondès Kahouli, 2018. "Fuel poverty and residential energy demand: how fuel-poor households react to energy price fluctuations," Post-Print halshs-01957771, HAL.
    7. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    8. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    9. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    10. John Curtis & Brian Stanley, 2016. "Analysing Residential Energy Demand: An Error Correction Demand System Approach for Ireland," The Economic and Social Review, Economic and Social Studies, vol. 47(2), pages 185-211.
    11. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    12. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    13. Yu, Chenyang & Tan, Yuanfang & Zhou, Yu & Zang, Chuanxiang & Tu, Chenglin, 2022. "Can functional urban specialization improve industrial energy efficiency? Empirical evidence from China," Energy, Elsevier, vol. 261(PA).
    14. Cristian Mardones & Pablo Herreros, 2023. "Ex post evaluation of voluntary environmental policies on the energy intensity in Chilean firms," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9111-9136, September.
    15. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    16. Jeroen van der Heijden, 2021. "When opportunity backfires: exploring the implementation of urban climate governance alternatives in three major US cities [Are LEED-Certified Buildings Energy-Efficient in Practice?]," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 40(1), pages 116-135.
    17. Tomasz Rokicki & Radosław Jadczak & Adam Kucharski & Piotr Bórawski & Aneta Bełdycka-Bórawska & András Szeberényi & Aleksandra Perkowska, 2022. "Changes in Energy Consumption and Energy Intensity in EU Countries as a Result of the COVID-19 Pandemic by Sector and Area Economy," Energies, MDPI, vol. 15(17), pages 1-26, August.
    18. Li-chen Zhang & Zheng-ai Dong & Zhi-xiong Tan & Jia-hui Luo & De-kui Yan, 2024. "Institutional Performance and Carbon Reduction Effect of High-Quality Development of New Energy: China’s Experience and Policy Implication," Sustainability, MDPI, vol. 16(16), pages 1-26, August.
    19. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    20. Xiaofeng Lv & Kun Lin & Lingshan Chen & Yongzhong Zhang, 2022. "Does Retirement Affect Household Energy Consumption Structure? Evidence from a Regression Discontinuity Design," Sustainability, MDPI, vol. 14(19), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:461-:d:481445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.