IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p263-d475474.html
   My bibliography  Save this article

Ultrasonic Delignification and Microstructural Characterization of Switchgrass

Author

Listed:
  • Onu Onu Olughu

    (Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada)

  • Lope G. Tabil

    (Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada)

  • Tim Dumonceaux

    (Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada)

Abstract

This present study was undertaken to investigate the ultrasonic delignification of switchgrass ( Panicum virgatum L.) and the effects of ultrasonic irradiation on the molecular and microstructure of switchgrass. We investigated this question using response surface methodology (RSM) featuring a four-factor, three-level Box–Behnken experimental design with acoustic power (120, 180, and 240 W), solid–solvent ratio (1/25, 1/20, and 1/15 g/mL), hammer mill screen size (1.6, 3.2, and 6.4 mm), and sonication time (10, 30, and 50 min) as factors, while delignification (%) was the response variable. The native and treated switchgrass samples were further characterized through crystallinity measurements and electron microscopy. The results of lignin analysis show that the percent delignification ranged between 1.86% and 20.11%. The multivariate quadratic regression model developed was statistically significant at p < 0.05. SEM and TEM micrographs of the treated switchgrass grinds resulted in cell wall disruption at the micro- and nano-scales. XRD analysis revealed a reduction in the mean crystallite size and crystallinity index from 15.39 to 13.13 Å and 48.86% to 47.49%, respectively, while no significant change occurred in the d-spacings. The results of this investigation show that ultrasonic irradiation induces chemical and structural changes in switchgrass, which could enhance its use for biofuel and bioproducts applications.

Suggested Citation

  • Onu Onu Olughu & Lope G. Tabil & Tim Dumonceaux, 2021. "Ultrasonic Delignification and Microstructural Characterization of Switchgrass," Energies, MDPI, vol. 14(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:263-:d:475474
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/263/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Onu Onu Olughu & Lope G. Tabil & Tim Dumonceaux & Edmund Mupondwa & Duncan Cree, 2021. "Comparative Study on Quality of Fuel Pellets from Switchgrass Treated with Different White-Rot Fungi," Energies, MDPI, vol. 14(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:263-:d:475474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.