IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8558-d705870.html
   My bibliography  Save this article

Making School-Based GHG-Emissions Tangible by Student-Led Carbon Footprint Assessment Program

Author

Listed:
  • Oliver Wagner

    (Energy, Transport and Climate Policy Division, Wuppertal Institute, Doeppersberg 19, 42103 Wuppertal, Germany)

  • Lena Tholen

    (Energy, Transport and Climate Policy Division, Wuppertal Institute, Doeppersberg 19, 42103 Wuppertal, Germany)

  • Lotte Nawothnig

    (Energy, Transport and Climate Policy Division, Wuppertal Institute, Doeppersberg 19, 42103 Wuppertal, Germany)

  • Sebastian Albert-Seifried

    (Büro Ö-Quadrat, Turnseestraße 44, 79102 Freiburg, Germany)

Abstract

Schools play an important role in achieving climate protection goals, because they lay the foundation of knowledge for a responsible next generation. Therefore, schools as institutions have a special role model function. Enabling schools to become aware of their own carbon footprint (CF) is an important prerequisite for being able to tap the substantial CO 2 reduction potential. Aiming at the direct involvement of students in the assessment process, a new assessment tool was developed within the Schools4Future project that gives students the opportunity to determine their own school’s CF. With this instrument the CO 2 emissions caused by mobility, heating and electricity consumption as well as for food in the school canteen and for consumables (paper) can be recorded. It also takes into account existing renewable energy sources. Through the development of the tool, not only a monitoring instrument was established but also a concrete starting point from which students could take actions to reduce Greenhouse Gas (GHG) emissions. This paper presents the tool and its methods used to calculate the CF and compares it with existing approaches. A comparative case study of four pilot schools in Germany demonstrates the practicability of the tool and reveals fundamental differences between the GHG emissions.

Suggested Citation

  • Oliver Wagner & Lena Tholen & Lotte Nawothnig & Sebastian Albert-Seifried, 2021. "Making School-Based GHG-Emissions Tangible by Student-Led Carbon Footprint Assessment Program," Energies, MDPI, vol. 14(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8558-:d:705870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8558/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8558/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. C. Minx & T. Wiedmann & R. Wood & G. P. Peters & M. Lenzen & A. Owen & K. Scott & J. Barrett & K. Hubacek & G. Baiocchi & A. Paul & E. Dawkins & J. Briggs & D. Guan & S. Suh & F. Ackerman, 2009. "Input-Output Analysis And Carbon Footprinting: An Overview Of Applications," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 187-216.
    2. Kurt Berlo & Oliver Wagner & Marisa Heenen, 2016. "The Incumbents’ Conservation Strategies in the German Energy Regime as an Impediment to Re-Municipalization—An Analysis Guided by the Multi-Level Perspective," Sustainability, MDPI, vol. 9(1), pages 1-12, December.
    3. Željko Jurić & Davor Ljubas, 2020. "Comparative Assessment of Carbon Footprints of Selected Organizations: The Application of the Enhanced Bilan Carbone Model," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Battistini & Fabrizio Passarini & Rita Marrollo & Claudio Lantieri & Andrea Simone & Valeria Vignali, 2022. "How to Assess the Carbon Footprint of a Large University? The Case Study of University of Bologna’s Multicampus Organization," Energies, MDPI, vol. 16(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Wagner & Thomas Adisorn & Lena Tholen & Dagmar Kiyar, 2020. "Surviving the Energy Transition: Development of a Proposal for Evaluating Sustainable Business Models for Incumbents in Germany’s Electricity Market," Energies, MDPI, vol. 13(3), pages 1-17, February.
    2. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    3. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    4. Huang, Liqiao & Long, Yin & Chen, Jundong & Yoshida, Yoshikuni, 2023. "Sustainable lifestyle: Urban household carbon footprint accounting and policy implications for lifestyle-based decarbonization," Energy Policy, Elsevier, vol. 181(C).
    5. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    6. Justiani Sally & Wibowo Budhi S., 2022. "The Economic and Environmental Benefits of Collaborative Pick-Up in Urban Delivery Systems," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 13(1), pages 245-256, January.
    7. Thomas Beaussier & Sylvain Caurla & Véronique Bellon Maurel & Eléonore Loiseau, 2019. "Coupling economic models and environmental assessment methods to support regional policies : A critical review," Post-Print hal-02021423, HAL.
    8. Cahen-Fourot, Louison & Campiglio, Emanuele & Dawkins, Elena & Godin, Antoine & Kemp-Benedict, Eric, 2020. "Looking for the Inverted Pyramid: An Application Using Input-Output Networks," Ecological Economics, Elsevier, vol. 169(C).
    9. Ryoji Hasegawa & Shigemi Kagawa & Makiko Tsukui, 2015. "Carbon footprint analysis through constructing a multi-region input–output table: a case study of Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-20, December.
    10. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    11. Meng, Xiaoge & Yao, Zhong & Nie, Jiajia & Zhao, Yingxue & Li, Zenglu, 2018. "Low-carbon product selection with carbon tax and competition: Effects of the power structure," International Journal of Production Economics, Elsevier, vol. 200(C), pages 224-230.
    12. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    13. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2019. "Input-output models and waste management analysis: A critical review," ULB Institutional Repository 2013/359535, ULB -- Universite Libre de Bruxelles.
    14. Nabernegg, Stefan & Bednar-Friedl, Birgit & Muñoz, Pablo & Titz, Michaela & Vogel, Johanna, 2019. "National Policies for Global Emission Reductions: Effectiveness of Carbon Emission Reductions in International Supply Chains," Ecological Economics, Elsevier, vol. 158(C), pages 146-157.
    15. Duarte, Rosa & Miranda-Buetas, Sara & Sarasa, Cristina, 2021. "Household consumption patterns and income inequality in EU countries: Scenario analysis for a fair transition towards low-carbon economies," Energy Economics, Elsevier, vol. 104(C).
    16. Céline Antonin & Thomas Melonio & Xavier Timbeau, 2012. "L'epargne nette ré-ajustée," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(1), pages 259-286.
    17. Eckard Helmers & Chia Chien Chang & Justin Dauwels, 2022. "Carbon Footprinting of Universities Worldwide Part II: First Quantification of Complete Embodied Impacts of Two Campuses in Germany and Singapore," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    18. Caggiani, Leonardo & Ottomanelli, Michele & Dell’Orco, Mauro, 2014. "Handling uncertainty in Multi Regional Input-Output models by entropy maximization and fuzzy programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 159-172.
    19. Irina Safitri Zen & Abul Quasem Al-Amin & Md. Mahmudul Alam & Brent Doberstein, 2021. "Magnitudes of households’ carbon footprint in Iskandar Malaysia: Policy implications for sustainable development," Post-Print hal-03520198, HAL.
    20. Dong, Gang & Mao, Xianqiang & Zhou, Ji & Zeng, An, 2013. "Carbon footprint accounting and dynamics and the driving forces of agricultural production in Zhejiang Province, China," Ecological Economics, Elsevier, vol. 91(C), pages 38-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8558-:d:705870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.