IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8433-d702176.html
   My bibliography  Save this article

Power Management Analysis of a Photovoltaic and Battery Energy Storage-Based Smart Electrical Car Park Providing Ancillary Grid Services

Author

Listed:
  • Yingcheng Wang

    (Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, UK)

  • Daniel Gladwin

    (Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, UK)

Abstract

Future car parks will require significant power to support electric vehicle (EV) charging as there will be both an increase in the penetration of EVs and a higher demand for charging power as battery packs increase in capacity. The effective management of the charging and local battery storage can be installed to help prevent excessive increases in electrical feeder capacity; however, it is inevitable that car parks will attain significant power capability in the future. There is therefore an opportunity for car park owners to utilise this and generate additional revenue by providing frequency response services to the electrical grid. This paper describes the modelling of a car park that utilises photovoltaic power generation, battery storage, and EV charging management strategies to provide a grid frequency response service. The analysis using simulated car park data shows that it can provide a high availability in terms of service but it is dependent on the capacity of the installed generation and storage.

Suggested Citation

  • Yingcheng Wang & Daniel Gladwin, 2021. "Power Management Analysis of a Photovoltaic and Battery Energy Storage-Based Smart Electrical Car Park Providing Ancillary Grid Services," Energies, MDPI, vol. 14(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8433-:d:702176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farangi, Mostafa & Asl Soleimani, Ebrahim & Zahedifar, Mostafa & Amiri, Omid & Poursafar, Jafar, 2020. "The environmental and economic analysis of grid-connected photovoltaic power systems with silicon solar panels, in accord with the new energy policy in Iran," Energy, Elsevier, vol. 202(C).
    2. Larry Erickson & Stephanie Ma, 2021. "Solar-Powered Charging Networks for Electric Vehicles," Energies, MDPI, vol. 14(4), pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Venancio M. L. Filho & Andrea S. M. Vasconcelos & Washington de A. S. Junior & Nicolau K. L. Dantas & Ayrlw Maynyson C. Arcanjo & Amanda C. M. Souza & Amanda L. Fernandes & Kaihang Zhang & Kun, 2023. "Impact Analysis and Energy Quality of Photovoltaic, Electric Vehicle and BESS Lead-Carbon Recharge Station in Brazil," Energies, MDPI, vol. 16(5), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varone, Alberto & Heilmann, Zeno & Porruvecchio, Guido & Romanino, Alessandro, 2024. "Solar parking lot management: An IoT platform for smart charging EV fleets, using real-time data and production forecasts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Ghandehariun, Samane & Ghandehariun, Amir M. & Bahrami Ziabari, Nima, 2024. "Complementary assessment and design optimization of a hybrid renewable energy system integrated with open-loop pumped hydro energy storage," Renewable Energy, Elsevier, vol. 227(C).
    3. Mariusz Izdebski & Marianna Jacyna, 2021. "An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises," Energies, MDPI, vol. 14(7), pages 1-23, April.
    4. Armin Razmjoo & Arezoo Ghazanfari & Poul Alberg Østergaard & Sepideh Abedi, 2023. "Design and Analysis of Grid-Connected Solar Photovoltaic Systems for Sustainable Development of Remote Areas," Energies, MDPI, vol. 16(7), pages 1-21, March.
    5. Magdalena Sobocińska, 2022. "Processes of Modernization of Consumption in Poland in the Context of the Sustainable Consumption and the Functioning of the Renewable Energy Market," Energies, MDPI, vol. 15(1), pages 1-17, January.
    6. Ana Carolina Kulik & Édwin Augusto Tonolo & Alberto Kisner Scortegagna & Jardel Eugênio da Silva & Jair Urbanetz Junior, 2021. "Analysis of Scenarios for the Insertion of Electric Vehicles in Conjunction with a Solar Carport in the City of Curitiba, Paraná—Brazil," Energies, MDPI, vol. 14(16), pages 1-15, August.
    7. Jamali, Mohammad-Bagher & Rasti-Barzoki, Morteza, 2022. "A game-theoretic approach for examining government support strategies and licensing contracts in an electricity supply chain with technology spillover: A case study of Iran," Energy, Elsevier, vol. 242(C).
    8. Abeer Abdullah Al Anazi & Abdullah Albaker & Wongchai Anupong & Abdul Rab Asary & Rajabov Sherzod Umurzoqovich & Iskandar Muda & Rosario Mireya Romero-Parra & Reza Alayi & Laveet Kumar, 2022. "Technical, Economic, and Environmental Analysis and Comparison of Different Scenarios for the Grid-Connected PV Power Plant," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    9. Seera, Manjeevan & Tan, Choo Jun & Chong, Kok-Keong & Lim, Chee Peng, 2021. "Performance analyses of various commercial photovoltaic modules based on local spectral irradiances in Malaysia using genetic algorithm," Energy, Elsevier, vol. 223(C).
    10. Liu, Jicheng & Lu, Yunyuan, 2022. "Research on the evaluation of China's photovoltaic policy driving ability under the background of carbon neutrality," Energy, Elsevier, vol. 250(C).
    11. Zhaohua Wang & Bin Lu & Bo Wang & Yueming (Lucy) Qiu & Han Shi & Bin Zhang & Jingyun Li & Hao Li & Wenhui Zhao, 2023. "Incentive based emergency demand response effectively reduces peak load during heatwave without harm to vulnerable groups," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Yong, Jin Yi & Tan, Wen Shan & Khorasany, Mohsen & Razzaghi, Reza, 2023. "Electric vehicles destination charging: An overview of charging tariffs, business models and coordination strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Waqas Ahmed & Jamil Ahmed Sheikh & Abbas Z. Kouzani & M. A. Parvez Mahmud, 2020. "The Role of Single End-Users and Producers on GHG Mitigation in Pakistan—A Case Study," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    14. Youssef Kassem & Hüseyin Gökçekuş & Ali Güvensoy, 2021. "Techno-Economic Feasibility of Grid-Connected Solar PV System at Near East University Hospital, Northern Cyprus," Energies, MDPI, vol. 14(22), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8433-:d:702176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.