IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7933-d688512.html
   My bibliography  Save this article

Application of State Estimation in Distribution Systems with Embedded Microgrids

Author

Listed:
  • Nikolaos M. Manousakis

    (Department of Electrical & Electronics Engineering, University of West Attica, 12244 Athens, Greece)

  • George N. Korres

    (School of Electrical & Computer Engineering, National Technical University of Athens, 15780 Athens, Greece)

Abstract

In this paper, a weighted least square (WLS) state estimation algorithm with equality constraints is proposed for smart distribution networks embedded with microgrids. Since only a limited number of real-time measurements are available at the primary or secondary substations and distributed generation sites, load estimates at unmeasured buses remote from the substations are needed to execute state estimation. The load information can be obtained by forecasted and historical data or smart real-time meters. The proposed algorithms can be applied in either grid-connected or islanded operation mode and can efficiently identify breaker status errors at the main substations and feeders, where sufficient measurement redundancy exists. The impact of the accuracy of real and pseudo-measurements on the estimated bus voltages is tested with a 55-bus distribution network including distributed generation.

Suggested Citation

  • Nikolaos M. Manousakis & George N. Korres, 2021. "Application of State Estimation in Distribution Systems with Embedded Microgrids," Energies, MDPI, vol. 14(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7933-:d:688512
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Depuru, Soma Shekara Sreenadh Reddy & Wang, Lingfeng & Devabhaktuni, Vijay, 2011. "Smart meters for power grid: Challenges, issues, advantages and status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2736-2742, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos M. Manousakis, 2022. "Advanced Electrical Measurements Technologies," Energies, MDPI, vol. 15(9), pages 1-6, April.
    2. Luis Vargas & Henrry Moyano, 2023. "A Novel Multi-Area Distribution State Estimation Approach with Nodal Redundancy," Energies, MDPI, vol. 16(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    2. Najam Ul Hasan & Waleed Ejaz & Mahin K. Atiq & Hyung Seok Kim, 2013. "Recursive Pyramid Algorithm-Based Discrete Wavelet Transform for Reactive Power Measurement in Smart Meters," Energies, MDPI, vol. 6(9), pages 1-18, September.
    3. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    4. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    5. Shahrouz Abolhosseini & Almas Heshmati & Jorn Altmann, 2014. "The Effect of Renewable Energy Development on Carbon Emission Reduction: An Empirical Analysis for the EU-15 Countries," TEMEP Discussion Papers 2014109, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2014.
    6. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    7. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    8. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    9. Emad Ebeid & Rune Heick & Rune Hylsberg Jacobsen, 2017. "Deducing Energy Consumer Behavior from Smart Meter Data," Future Internet, MDPI, vol. 9(3), pages 1-25, July.
    10. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    11. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    12. Reddy, K.S. & Kumar, Madhusudan & Mallick, T.K. & Sharon, H. & Lokeswaran, S., 2014. "A review of Integration, Control, Communication and Metering (ICCM) of renewable energy based smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 180-192.
    13. Su, Yu-Wen, 2019. "Residential electricity demand in Taiwan: Consumption behavior and rebound effect," Energy Policy, Elsevier, vol. 124(C), pages 36-45.
    14. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    15. K. Habibul Kabir & Shafquat Yasar Aurko & Md. Saifur Rahman, 2021. "Smart Power Management in OIC Countries: A Critical Overview Using SWOT-AHP and Hybrid MCDM Analysis," Energies, MDPI, vol. 14(20), pages 1-50, October.
    16. Bokyung Ko & Nugroho Prananto Utomo & Gilsoo Jang & Jaehan Kim & Jintae Cho, 2013. "Optimal Scheduling for the Complementary Energy Storage System Operation Based on Smart Metering Data in the DC Distribution System," Energies, MDPI, vol. 6(12), pages 1-17, December.
    17. Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
    18. Warren, Peter, 2014. "A review of demand-side management policy in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 941-951.
    19. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.
    20. Pereira, Guillermo Ivan & Specht, Jan Martin & Silva, Patrícia Pereira & Madlener, Reinhard, 2018. "Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making," Energy Policy, Elsevier, vol. 121(C), pages 426-440.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7933-:d:688512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.