IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7818-d685097.html
   My bibliography  Save this article

Analysis of Geologic CO 2 Migration Pathways in Farnsworth Field, NW Anadarko Basin

Author

Listed:
  • Jolante van Wijk

    (Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
    Los Alamos National Laboratory, Computational Earth Science Group, Los Alamos, NM 87544, USA)

  • Noah Hobbs

    (Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA)

  • Peter Rose

    (Energy & Geoscience Institute at the University of Utah, Salt Lake City, UT 84108, USA)

  • Michael Mella

    (Energy & Geoscience Institute at the University of Utah, Salt Lake City, UT 84108, USA)

  • Gary Axen

    (Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA)

  • Evan Gragg

    (Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
    SM Energy Company, 1775 Sherman St., Suite 1200, Denver, CO 80203, USA)

Abstract

This study reports on analyses of natural, geologic CO 2 migration paths in Farnsworth Oil Field, northern Texas, where CO 2 was injected into the Pennsylvanian Morrow B reservoir as part of enhanced oil recovery and carbon sequestration efforts. We interpret 2D and 3D seismic reflection datasets of the study site, which is located on the western flank of the Anadarko basin, and compare our seismic interpretations with results from a tracer study. Petroleum system models are developed to understand the petroleum system and petroleum- and CO 2 -migration pathways. We find no evidence of seismically resolvable faults in Farnsworth Field, but interpret a karst structure, erosional structures, and incised valleys. These interpretations are compared with results of a Morrow B well-to-well tracer study that suggests that inter-well flow is up-dip or lateral. Southeastward fluid flow is inhibited by dip direction, thinning, and draping of the Morrow B reservoir over a deeper, eroded formation. Petroleum system models predict a deep basin-ward increase in temperature and maturation of the source rocks. In the northwestern Anadarko Basin, petroleum migration was generally up-dip with local exceptions; the Morrow B sandstone was likely charged by formations both below and overlying the reservoir rock. Based on this analysis, we conclude that CO 2 escape in Farnsworth Field via geologic pathways such as tectonic faults is unlikely. Abandoned or aged wellbores remain a risk for CO 2 escape from the reservoir formation and deserve further monitoring and research.

Suggested Citation

  • Jolante van Wijk & Noah Hobbs & Peter Rose & Michael Mella & Gary Axen & Evan Gragg, 2021. "Analysis of Geologic CO 2 Migration Pathways in Farnsworth Field, NW Anadarko Basin," Energies, MDPI, vol. 14(22), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7818-:d:685097
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martha Cather & Dylan Rose-Coss & Sara Gallagher & Natasha Trujillo & Steven Cather & Robert Spencer Hollingworth & Peter Mozley & Ryan J. Leary, 2021. "Deposition, Diagenesis, and Sequence Stratigraphy of the Pennsylvanian Morrowan and Atokan Intervals at Farnsworth Unit," Energies, MDPI, vol. 14(4), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Qin & Jiaxuan Li & Lianjie Huang & Kai Gao & David Li & Ting Chen & Tom Bratton & George El-kaseeh & William Ampomah & Titus Ispirescu & Martha Cather & Robert Balch & Yingcai Zheng & Shuhang Tang, 2023. "Microseismic Monitoring at the Farnsworth CO 2 -EOR Field," Energies, MDPI, vol. 16(10), pages 1-14, May.
    2. Xiao, Ting & Chen, Ting & Ma, Zhiwei & Tian, Hailong & Meguerdijian, Saro & Chen, Bailian & Pawar, Rajesh & Huang, Lianjie & Xu, Tianfu & Cather, Martha & McPherson, Brian, 2024. "A review of risk and uncertainty assessment for geologic carbon storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Appiah Acheampong & William Ampomah & Don Lee & Angus Eastwood-Anaba, 2023. "Coupled Hydromechanical Modeling and Assessment of Induced Seismicity at FWU: Utilizing Time-Lapse VSP and Microseismic Data," Energies, MDPI, vol. 16(10), pages 1-24, May.
    2. Robert Will & Tom Bratton & William Ampomah & Samuel Acheampong & Martha Cather & Robert Balch, 2021. "Time-Lapse Integration at FWU: Fluids, Rock Physics, Numerical Model Integration, and Field Data Comparison," Energies, MDPI, vol. 14(17), pages 1-24, September.
    3. Samuel Appiah Acheampong & William Ampomah & Hassan Khaniani & Robert Will & Justice Sarkodie‐Kyeremeh, 2022. "Quantitative interpretation of time‐lapse seismic data at Farnsworth field unit: Rock physics modeling, and calibration of simulated time‐lapse velocity responses," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(6), pages 671-697, December.
    4. Eusebius J. Kutsienyo & Martin S. Appold & Martha E. Cather, 2023. "Investigation of the Effect of Injected CO 2 on the Morrow B Sandstone through Laboratory Batch Reaction Experiments: Implications for CO 2 Sequestration in the Farnsworth Unit, Northern Texas, USA," Energies, MDPI, vol. 16(12), pages 1-22, June.
    5. Natasha Trujillo & Dylan Rose-Coss & Jason E. Heath & Thomas A. Dewers & William Ampomah & Peter S. Mozley & Martha Cather, 2021. "Multiscale Assessment of Caprock Integrity for Geologic Carbon Storage in the Pennsylvanian Farnsworth Unit, Texas, USA," Energies, MDPI, vol. 14(18), pages 1-26, September.
    6. George El-kaseeh & Kevin L. McCormack, 2023. "Multi-Scale Seismic Measurements for Site Characterization and CO 2 Monitoring in an Enhanced Oil Recovery/Carbon Capture, Utilization, and Sequestration Project, Farnsworth Field, Texas," Energies, MDPI, vol. 16(20), pages 1-19, October.
    7. William Ampomah & Brian McPherson & Robert Balch & Reid Grigg & Martha Cather, 2022. "Forecasting CO 2 Sequestration with Enhanced Oil Recovery," Energies, MDPI, vol. 15(16), pages 1-7, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7818-:d:685097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.