IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7707-d681449.html
   My bibliography  Save this article

Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model

Author

Listed:
  • Diogo F. Costa Silva

    (Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, Brazil)

  • Arlindo R. Galvão Filho

    (Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, Brazil
    Master’s School of Production and Systems Engineering (MEPROS), Pontifical Catholic University of Goiás, Goiânia 74605-220, Brazil)

  • Rafael V. Carvalho

    (Master’s School of Production and Systems Engineering (MEPROS), Pontifical Catholic University of Goiás, Goiânia 74605-220, Brazil)

  • Filipe de Souza L. Ribeiro

    (Operational Department, Jirau Hidroeletric Power Plant, Energia Sustentável do Brasil, Porto Velho 76840-000, Brazil)

  • Clarimar J. Coelho

    (Master’s School of Production and Systems Engineering (MEPROS), Pontifical Catholic University of Goiás, Goiânia 74605-220, Brazil)

Abstract

Water flow forecasts are an essential information for energy production, management and hydropower control. Advanced actions to optimize electricity production can be taken based on predicted information. This work proposes an ensemble strategy using recurrent neural networks to generate a forecast of water flow at Jirau Hydroelectric Power Plant (HPP), installed on the Madeira River in Brazil. The ensemble strategy consists of combining three long short-term memory (LSTM) networks that model the Madeira River and two of its tributaries: Mamoré and Abunã rivers. The historical data from streamflow of the Madeira river and its tributaries are used to validate the ensemble LSTM model, where each time series of river tributaries are modeled separated by LSTM models and the result used as input for another LSTM model in order to forecast the streamflow of the main river. The experimental results present low errors for training and test sets for individual LSTM networks and ensemble model. In addition, these results were compared with the operational forecasts performed by Jirau HPP. The proposed model showed better accuracy in four of the five scenarios tested, which indicates a promising approach to be explored in water flow forecasting based on river tributaries.

Suggested Citation

  • Diogo F. Costa Silva & Arlindo R. Galvão Filho & Rafael V. Carvalho & Filipe de Souza L. Ribeiro & Clarimar J. Coelho, 2021. "Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model," Energies, MDPI, vol. 14(22), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7707-:d:681449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7707/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7707/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jae Young Choi & Bumshik Lee, 2018. "Combining LSTM Network Ensemble via Adaptive Weighting for Improved Time Series Forecasting," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    2. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
    3. Li, Haolong & Chen, Qihong & Zhang, Liyan & Liu, Li & Xiao, Peng, 2023. "Degradation prediction of proton exchange membrane fuel cell based on the multi-inputs Bi-directional long short-term memory," Applied Energy, Elsevier, vol. 344(C).
    4. Jiseong Noh & Hyun-Ji Park & Jong Soo Kim & Seung-June Hwang, 2020. "Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    5. Maciej Slowik & Wieslaw Urban, 2022. "Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant," Energies, MDPI, vol. 15(9), pages 1-16, May.
    6. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Montserrat Reyna Miranda & Ricardo Massa Roldán & Vicente Gómez Salcido, 2022. "Neuro-wavelet Model for price prediction in high-frequency data in the Mexican Stock market," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(1), pages 1-23, Enero - M.
    8. Chien-Chih Wang, 2024. "T 2 -LSTM-Based AI System for Early Detection of Motor Failure in Chemical Plants," Mathematics, MDPI, vol. 12(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7707-:d:681449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.