IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7552-d677419.html
   My bibliography  Save this article

Design and Evaluation of High-Temperature Well Cementing Slurry System Based on Fractal Theory

Author

Listed:
  • Guanyi Zheng

    (College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Xiaoyang Guo

    (College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Zaoyuan Li

    (College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Jinfei Sun

    (College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China)

Abstract

The efficient development of oil and gas resources is inseparable from the progress of drilling technology and the safety of the long life cycle of wellbore. At present, exploration and development is expanding to deep and ultra-deep areas. The long life cycle safety of deep and ultra-deep wells is mainly realized by the sealing performance of cement slurry. Additionally, the accumulation degree of cement slurry particles is closely related to sealing performance. Based on fractal theory, an accumulation model of continuous distribution of additive material particles was designed, which can determine the range of fractal dimension necessary to realize the tight stacking and guide the proportion of solid admixture. The formulation of high temperature-resistant cement slurry was prepared by designing the ratio of solid admixture and optimizing the high temperature-resistant liquid admixture. The evaluation of engineering and temperature resistance of the cement slurry proves the rationality of the accumulation model, which can be applied to the design of a high temperature cementing slurry system in deep and ultra-deep wells.

Suggested Citation

  • Guanyi Zheng & Xiaoyang Guo & Zaoyuan Li & Jinfei Sun, 2021. "Design and Evaluation of High-Temperature Well Cementing Slurry System Based on Fractal Theory," Energies, MDPI, vol. 14(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7552-:d:677419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahn, Yuchan & Kim, Junghwan & Kwon, Joseph Sang-Il, 2020. "Optimal design of supply chain network with carbon dioxide injection for enhanced shale gas recovery," Applied Energy, Elsevier, vol. 274(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Kaiyu & Son, Sang Hwan & Moon, Jiyoung & Kwon, Joseph Sang-Il, 2021. "A closed-loop integration of scheduling and control for hydraulic fracturing using offset-free model predictive control," Applied Energy, Elsevier, vol. 302(C).
    2. Liu, Jianye & Li, Zuxin & Luo, Dongkun & Duan, Xuqiang & Liu, Ruolei, 2020. "Shale gas production in China: A regional analysis of subsidies and suggestions for policy," Utilities Policy, Elsevier, vol. 67(C).
    3. Hong, Bingyuan & Du, Zhaonan & Qiao, Dan & Liu, Daiwei & Li, Yu & Sun, Xiaoqing & Gong, Jing & Zhang, Hongyu & Li, Xiaoping, 2024. "Sustainable supply chain of distributed multi-product gas fields based on skid-mounted equipment to dynamically respond to upstream and market fluctuations," Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7552-:d:677419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.