IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7427-d674422.html
   My bibliography  Save this article

The Connection between Architectural Elements and Adaptive Thermal Comfort of Tropical Vernacular Houses in Mountain and Beach Locations

Author

Listed:
  • Hermawan Hermawan

    (Architecture Department, Faculty of Engineering and Computer Science, Qur’anic Science University, Wonosobo 56351, Indonesia)

  • Jozef Švajlenka

    (Department of Construction Technology, Economy and Management, Faculty of Civil Engineering, Technical University of Košice, 042 00 Košice, Slovakia)

Abstract

Passive thermal comfort has been widely used to test the thermal performance of a building. The science of active thermal comfort is important to be connected with the science of architecture. The currently developing active thermal comfort is adaptive thermal comfort. Vernacular houses are believed to be able to create thermal comfort for the inhabitants. The present study seeks to analyze the connection between the architectural elements of vernacular houses and adaptive thermal comfort. A mixed method was applied. A quantitative approach was used in the measurement of variables of climate, while a qualitative methodology was employed in an interview on thermal sensations. The connection between architectural elements and adaptive thermal comfort was analyzed by considering the correlation among architectural features, the analysis results of thermal comfort, and the Olgyay and psychrometric diagrams. At the beginning of the rainy season, residents of exposed stone houses had the highest comfortable percentage of 31%. In the middle of the rainy season, the highest percentage of comfort was obtained by residents of exposed brick and wooden houses on the beach at 39%. The lowest comfortable percentage experienced by residents of exposed stone houses at the beginning of the dry season was 0%. The beginning of the dry season in mountainous areas has air temperatures that are too low, making residents uncomfortable. The study results demonstrate that adaptive thermal comfort is related to using a room for adaptation to create thermal comfort for the inhabitants.

Suggested Citation

  • Hermawan Hermawan & Jozef Švajlenka, 2021. "The Connection between Architectural Elements and Adaptive Thermal Comfort of Tropical Vernacular Houses in Mountain and Beach Locations," Energies, MDPI, vol. 14(21), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7427-:d:674422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7427/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aiman Albatayneh & Dariusz Alterman & Adrian Page & Behdad Moghtaderi, 2018. "The Impact of the Thermal Comfort Models on the Prediction of Building Energy Consumption," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miroslav Badida & Marek Moravec & Miriama Pinosova & Miriam Andrejiova & Kristián Pástor & Alžbeta Nováková & Tibor Dzuro, 2022. "Analysis and Research on the Use of Bulk Recycled Materials for Sound Insulation Applications," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    2. Chiemi Iba & Shuichi Hokoi, 2022. "Traditional Town Houses in Kyoto, Japan: Present and Future," Energies, MDPI, vol. 15(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aiman Albatayneh & Dariusz Alterman & Adrian Page & Behdad Moghtaderi, 2019. "The Significance of the Adaptive Thermal Comfort Limits on the Air-Conditioning Loads in a Temperate Climate," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    2. Aiman Albatayneh & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings," Energies, MDPI, vol. 14(17), pages 1-20, September.
    3. Marek Dudzik, 2020. "Towards Characterization of Indoor Environment in Smart Buildings: Modelling PMV Index Using Neural Network with One Hidden Layer," Sustainability, MDPI, vol. 12(17), pages 1-37, August.
    4. Wen Cao & Lin Yang & Qinyi Zhang & Lihua Chen & Weidong Wu, 2021. "Evaluation of Rural Dwellings’ Energy-Saving Retrofit with Adaptive Thermal Comfort Theory," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    5. Kashif Irshad & Salem Algarni & Mohammad Tauheed Ahmad & Sayed Ameenuddin Irfan & Khairul Habib & Mostafa A.H. Abdelmohimen & Md. Hasan Zahir & Gulam Mohammed Sayeed Ahmed, 2019. "Microclimate Thermal Management Using Thermoelectric Air-Cooling Duct System Operated at Five Incremental Powers and its Effect on Sleep Adaptation of the Occupants," Energies, MDPI, vol. 12(19), pages 1-25, September.
    6. Zini, Marco & Carcasci, Carlo, 2023. "Machine learning-based monitoring method for the electricity consumption of a healthcare facility in Italy," Energy, Elsevier, vol. 262(PB).
    7. Aiman Albatayneh & Mohammed N. Assaf & Renad Albadaineh & Adel Juaidi & Ramez Abdallah & Alberto Zabalo & Francisco Manzano-Agugliaro, 2022. "Reducing the Operating Energy of Buildings in Arid Climates through an Adaptive Approach," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    8. Domenico Palladino & Iole Nardi & Cinzia Buratti, 2020. "Artificial Neural Network for the Thermal Comfort Index Prediction: Development of a New Simplified Algorithm," Energies, MDPI, vol. 13(17), pages 1-27, September.
    9. Pao-Hung Lin & Chin-Chuan Chang & Yu-Hui Lin & Wei-Liang Lin, 2019. "Green BIM Assessment Applying for Energy Consumption and Comfort in the Traditional Public Market: A Case Study," Sustainability, MDPI, vol. 11(17), pages 1-26, August.
    10. Reihaneh Aram & Halil Zafer Alibaba, 2019. "Analyzing Atrium Volume Designs for Hot and Humid Climates," Sustainability, MDPI, vol. 11(22), pages 1-40, November.
    11. Mohamed H. Elnabawi & Esmail Saber, 2022. "Reducing carbon footprint and cooling demand in arid climates using an integrated hybrid ventilation and photovoltaic approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3396-3418, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7427-:d:674422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.