IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7424-d674378.html
   My bibliography  Save this article

Improvement of BIPV Efficiency by Application of Highly Reflective Surfaces at the Building Envelope

Author

Listed:
  • Dominika Knera

    (Department of Environmental Engineering, Lodz University of Technology, 90924 Lodz, Poland)

  • Pablo Roberto Dellicompagni

    (Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CIDMEJu), San Salvador de Jujuy 5707, Argentina)

  • Dariusz Heim

    (Department of Environmental Engineering, Lodz University of Technology, 90924 Lodz, Poland)

Abstract

The use of concentrated solar irradiation for the improvement of electric generation improvement has been implemented on different scales, mainly in photovoltaic systems. High-concentration Fresnel lenses are widely chosen for this approach in large installations, while low-concentration systems are rather applied in medium-low scales. For the latter, the improvement on electric performance was revealed, even when no solar tracking was implemented. The presented work aims to analyse a low-concentration photovoltaic installation by a numerical approach. First, the reflective surfaces were designed geometrically considering the optimal slope determined for each month. Subsequently, different simulation techniques were used separately for prediction of solar irradiation and energy production. Three criteria were selected to analyze power generation: the highest increase in total annual solar irradiance on panels with reflective surfaces, the highest total annual solar irradiance collected, and the optimal slope of panels for the entire year. The increase in energy was found to not exceed 10% in the winter months. Whereas in the spring and summer months the energy improvement is about 15–20%. Moreover, it was observed that the temperature of the proposed concentration photovoltaic system increased significantly, reaching more than 90 °C, while for traditional PV panels it did not exceed 75 °C.

Suggested Citation

  • Dominika Knera & Pablo Roberto Dellicompagni & Dariusz Heim, 2021. "Improvement of BIPV Efficiency by Application of Highly Reflective Surfaces at the Building Envelope," Energies, MDPI, vol. 14(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7424-:d:674378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raul Rotar & Sorin Liviu Jurj & Robert Susany & Flavius Opritoiu & Mircea Vladutiu, 2021. "Global Energy Production Computation of a Solar-Powered Smart Home Automation System Using Reliability-Oriented Metrics," Energies, MDPI, vol. 14(9), pages 1-23, April.
    2. Pérez-Higueras, P. & Muñoz, E. & Almonacid, G. & Vidal, P.G., 2011. "High Concentrator PhotoVoltaics efficiencies: Present status and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1810-1815, May.
    3. Alessandra Scognamiglio, 2021. "A Trans-Disciplinary Vocabulary for Assessing the Visual Performance of BIPV," Sustainability, MDPI, vol. 13(10), pages 1-38, May.
    4. Angelo Monteleone & Gianluca Rodonò & Antonio Gagliano & Vincenzo Sapienza, 2021. "SLICE: An Innovative Photovoltaic Solution for Adaptive Envelope Prototyping and Testing in a Relevant Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    5. Amy A. Kim & Dorothy A. Reed & Youngjun Choe & Shuoqi Wang & Carolina Recart, 2019. "New Building Cladding System Using Independent Tilted BIPV Panels with Battery Storage Capability," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    6. Wang, Gang & Wang, Fasi & Chen, Zeshao & Hu, Peng & Cao, Ruifeng, 2019. "Experimental study and optical analyses of a multi-segment plate (MSP) concentrator for solar concentration photovoltaic (CPV) system," Renewable Energy, Elsevier, vol. 134(C), pages 284-291.
    7. Xie, W.T. & Dai, Y.J. & Wang, R.Z. & Sumathy, K., 2011. "Concentrated solar energy applications using Fresnel lenses: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2588-2606, August.
    8. Bigorajski, Jarosław & Chwieduk, Dorota, 2019. "Analysis of a micro photovoltaic/thermal – PV/T system operation in moderate climate," Renewable Energy, Elsevier, vol. 137(C), pages 127-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dellicompagni, Pablo Roberto & Heim, Dariusz & Knera, Dominika & Krempski-Smejda, Michał, 2022. "A combined thermal and electrical performance evaluation of low concentration photovoltaic systems," Energy, Elsevier, vol. 254(PA).
    2. Andrzej Pacana & Dominika Siwiec, 2022. "Model to Predict Quality of Photovoltaic Panels Considering Customers’ Expectations," Energies, MDPI, vol. 15(3), pages 1-33, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, Eduardo F. & Pérez-Higueras, P. & Almonacid, F. & Ruiz-Arias, J.A. & Rodrigo, P. & Fernandez, J.I. & Luque-Heredia, I., 2015. "Model for estimating the energy yield of a high concentrator photovoltaic system," Energy, Elsevier, vol. 87(C), pages 77-85.
    2. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    3. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    4. Fernández, Eduardo F. & Almonacid, Florencia & Soria-Moya, Alberto & Terrados, Julio, 2015. "Experimental analysis of the spectral factor for quantifying the spectral influence on concentrator photovoltaic systems under real operating conditions," Energy, Elsevier, vol. 90(P2), pages 1878-1886.
    5. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    6. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2014. "Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 478-488.
    7. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    8. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    9. Rodrigo, P. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2016. "Analysis of electrical mismatches in high-concentrator photovoltaic power plants with distributed inverter configurations," Energy, Elsevier, vol. 107(C), pages 374-387.
    10. Almonacid, F. & Fernández, E.F. & Mallick, T.K. & Pérez-Higueras, P.J., 2015. "High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature," Energy, Elsevier, vol. 84(C), pages 336-343.
    11. Saim Memon & Khawaja Noman Tahir, 2018. "Experimental and Analytical Simulation Analyses on the Electrical Performance of Thermoelectric Generator Modules for Direct and Concentrated Quartz-Halogen Heat Harvesting," Energies, MDPI, vol. 11(12), pages 1-17, November.
    12. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    13. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    14. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    15. Datas, A. & Linares, P.G., 2017. "Monolithic interconnected modules (MIM) for high irradiance photovoltaic energy conversion: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 477-495.
    16. Rodrigo, P. & Gutiérrez, S. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2015. "A methodology for the electrical characterization of shaded high concentrator photovoltaic modules," Energy, Elsevier, vol. 89(C), pages 768-777.
    17. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    18. Karami, Babak & Azimi, Neda & Ahmadi, Shahin, 2021. "Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (EG)/paraffin-beef tallow-coconut oil composite as phase change material," Renewable Energy, Elsevier, vol. 178(C), pages 25-49.
    19. Tibúrcio, B.D. & Liang, D. & Almeida, J. & Garcia, D. & Catela, M. & Costa, H. & Vistas, C.R., 2022. "Tracking error compensation capacity measurement of a dual-rod side-pumping solar laser," Renewable Energy, Elsevier, vol. 195(C), pages 1253-1261.
    20. Ma, Xinglong & Zheng, Hongfei & Liu, Shuli, 2019. "Optimization on a cylindrical Fresnel lens and its validation in a medium-temperature solar steam generation system," Renewable Energy, Elsevier, vol. 134(C), pages 1332-1343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7424-:d:674378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.