IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7196-d670386.html
   My bibliography  Save this article

Modified Permanent Magnet Synchronous Generators for Using in Energy Supply System for Autonomous Consumer

Author

Listed:
  • Denis Kotin

    (Department of Electric Drive and Industry Automation, Novosibirsk State Technical University, 630073 Novosibirsk, Russia)

  • Ilya Ivanov

    (Department of Electric Drive and Industry Automation, Novosibirsk State Technical University, 630073 Novosibirsk, Russia)

  • Sofya Shtukkert

    (Department of Electric Drive and Industry Automation, Novosibirsk State Technical University, 630073 Novosibirsk, Russia)

Abstract

In this paper, the possibility of using synchronous generators with magnetoelectric excitation for the autonomous consumers’ supply with the use of renewable energy sources is considered. To eliminate a number of the disadvantages associated with the difficulty of energy-efficient regulation of the generated parameters, such as the generated current and voltage, the use of modified multi-winding synchronous generators with permanent magnets is proposed. It allows solving the problem of controlling this type of generator. In addition, the use of this type of generator helps to increase the amount of energy generated. The authors have proposed several synchronous generators with permanent magnets of various supply network architectures: single-phase, two-phase and traditional three-phase types. This will simplify the design of architecture for several cases of consumer power supply systems. It will also help to eliminate the need to organize a balanced distribution of loads in phases to prevent accidents, damage and/or disabling of consumers themselves. Here, we considered mathematical descriptions of several types of generators that differ in their assembling, in particular, the number of phases (one-, two- and three-phase generators), the number of pairs of permanent magnet poles on the rotor, and the method of switching the generator windings among themselves. Using the developed mathematical descriptions that describe the operation of every single winding of the generator, their mathematical models were developed in the SimInTech mathematical modeling environment. The results of the mathematical modeling of these generators were presented; their interpretation for use with renewable energy sources was made; and the methods of using these generators were described. The developed mathematical descriptions of synchronous generators with permanent magnets can be used for further study of their operation. It can also help for the development of control systems and power systems for micro-grid energy complexes that use renewable energy sources to increase the energy efficiency of micro-grid systems.

Suggested Citation

  • Denis Kotin & Ilya Ivanov & Sofya Shtukkert, 2021. "Modified Permanent Magnet Synchronous Generators for Using in Energy Supply System for Autonomous Consumer," Energies, MDPI, vol. 14(21), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7196-:d:670386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kodkin Vladimir & Anikin Alexander, 2021. "On the Physical Nature of Frequency Control Problems of Induction Motor Drives," Energies, MDPI, vol. 14(14), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Carbone & Simone Cosso & Krishneel Kumar & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2022. "Stability Analysis of Open-Loop V/Hz Controlled Asynchronous Machines and Two Novel Mitigation Strategies for Oscillations Suppression," Energies, MDPI, vol. 15(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7196-:d:670386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.