IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6893-d661166.html
   My bibliography  Save this article

Transient Stability Control Based on Kinetic Energy Changes Measured by Synchronized Angular Velocity

Author

Listed:
  • A. F. Diaz-Alzate

    (Research Group in Applied Technologies, Universidad Nacional de Colombia, Sede Medellín, Carrera 80 No. 65-223, Robledo, Medellín 050041, Colombia)

  • John E. Candelo-Becerra

    (Departamento de Energía Eléctrica y Automática, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Carrera 80 No. 65-223, Robledo, Medellín 050041, Colombia)

  • Albert Deluque-Pinto

    (Grupo DESTACAR, Facultad de Ingeniería, Universidad de La Guajira, Riohacha 440001, Colombia
    Departamento de Procesos y Energías, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, TAYEA—Carrera 80 No. 65-223, Medellín 050034, Colombia)

Abstract

Real-time transient stability studies are based on voltage angle measures obtained with phasor measurement units (PMUs). A more precise calculation to address transient stability is obtained when using the rotor angles. However, these values are commonly estimated, which leads to possible errors. In this work, the kinetic energy changes in electric machines are used as a criterion for evaluating and correcting transient stability, and to determine the precise time of insertion of a special protection system (SPS). Data from the PMU of the wide-area measurement system (WAMS) are used to construct the SPS. Furthermore, it is assumed that a microcontroller can be located in each generation unit to obtain the synchronized angular velocity. Based on these measurements, the kinetic energy of the system and the respective control action are performed at the appropriate time. The results show that the proposed SPS effectively corrects the oscillations fast enough during the transient stability event. In addition, the proposed method has the advantage that it does not depend on commonly proposed methods, such as system models, the identification of coherent machine groups, or the structure of the network. Moreover, the synchronized angular velocity signal is used, which is not commonly measured in power systems. Validation of the method is carried out in the New England power system, and the findings show that the method is helpful for real-time operation on large power systems.

Suggested Citation

  • A. F. Diaz-Alzate & John E. Candelo-Becerra & Albert Deluque-Pinto, 2021. "Transient Stability Control Based on Kinetic Energy Changes Measured by Synchronized Angular Velocity," Energies, MDPI, vol. 14(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6893-:d:661166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huaiyuan Wang & Baohui Zhang & Zhiguo Hao, 2015. "Response Based Emergency Control System for Power System Transient Stability," Energies, MDPI, vol. 8(12), pages 1-13, November.
    2. A. F. Diaz-Alzate & John E. Candelo-Becerra & Juan F. Villa Sierra, 2019. "Transient Stability Prediction for Real-Time Operation by Monitoring the Relative Angle with Predefined Thresholds," Energies, MDPI, vol. 12(5), pages 1-17, March.
    3. Hyeongpil Bang & Dwi Riana Aryani & Hwachang Song, 2021. "Application of Battery Energy Storage Systems for Relief of Generation Curtailment in Terms of Transient Stability," Energies, MDPI, vol. 14(13), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lasantha Meegahapola & Alfeu Sguarezi & Jack Stanley Bryant & Mingchen Gu & Eliomar R. Conde D. & Rafael B. A. Cunha, 2020. "Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends," Energies, MDPI, vol. 13(13), pages 1-35, July.
    2. Dan Huang & Qiyu Chen & Shiying Ma & Yichi Zhang & Shuyong Chen, 2018. "Wide-Area Measurement—Based Model-Free Approach for Online Power System Transient Stability Assessment," Energies, MDPI, vol. 11(4), pages 1-20, April.
    3. Tae-Hwan Jin & Ki-Yeol Shin & Mo Chung & Geon-Pyo Lim, 2022. "Development and Performance Verification of Frequency Control Algorithm and Hardware Controller Using Real-Time Cyber Physical System Simulator," Energies, MDPI, vol. 15(15), pages 1-24, August.
    4. Djalma M. Falcão & Sun Tao & Glauco N. Taranto & Thiago J. Masseran A. Parreiras & Murilo E. C. Bento & Dany H. Huanca & Hugo Muzitano & Paulo Esmeraldo & Pedro Lima & Lillian Monteath & Roberto Brand, 2024. "Case Studies of Battery Energy Storage System Applications in the Brazilian Transmission System," Energies, MDPI, vol. 17(22), pages 1-16, November.
    5. Toro-Cárdenas, Mateo & Moreira, Inês & Morais, Hugo & Carvalho, Pedro M.S. & Ferreira, Luis A.F.M., 2023. "Net load disaggregation at secondary substation level," Renewable Energy, Elsevier, vol. 207(C), pages 765-771.
    6. Park, Joungho & Hwan Ryu, Kyung & Kim, Chang-Hee & Chul Cho, Won & Kim, MinJoong & Hun Lee, Jae & Cho, Hyun-Seok & Lee, Jay H., 2023. "Green hydrogen to tackle the power curtailment: Meteorological data-based capacity factor and techno-economic analysis," Applied Energy, Elsevier, vol. 340(C).
    7. Peng Shen & Lin Guan & Zhenlin Huang & Liang Wu & Zetao Jiang, 2018. "Active-Current Control of Large-Scale Wind Turbines for Power System Transient Stability Improvement Based on Perturbation Estimation Approach," Energies, MDPI, vol. 11(8), pages 1-15, August.
    8. Ying-Yi Hong, 2016. "Electric Power Systems Research," Energies, MDPI, vol. 9(10), pages 1-4, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6893-:d:661166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.