IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6791-d658804.html
   My bibliography  Save this article

Optimal Determination Method of the Transposition Steps of An Extra-High Voltage Power Transmission Line

Author

Listed:
  • Alaa Khasawneh

    (Department of Electrical and Electronics Engineering Al Balqa Applied University, Al Salt 19117, Jordan)

  • Mohamed Qawaqzeh

    (Department of Electrical and Electronics Engineering Al Balqa Applied University, Al Salt 19117, Jordan)

  • Vladislav Kuchanskyy

    (Institute of Electrodynamics of NAS of Ukraine, str. Peremohy, 56, 03057 Kiev, Ukraine)

  • Olena Rubanenko

    (Department of Electrical Stations and Systems, Vinnytsia National Technical University, Khmelnytsky Highway, 95, 21021 Vinnytsya, Ukraine)

  • Oleksandr Miroshnyk

    (Department of Electricity and Energy Management, Kharkiv Petro Vasylenko National Technical University of Agriculture, str. Rizdviana, 19, 61052 Kharkiv, Ukraine)

  • Taras Shchur

    (Department of Cars and Tractors, Faculty of Mechanics and Energy, Lviv National Agrarian University, str. Volodymyr Great,1, 80381 Dubliany, Ukraine)

  • Marcin Drechny

    (Institute of Electrical Engineering, Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland)

Abstract

During the design of extra-high-voltage transmission lines, studies of the influence of asymmetry due to the phase difference of the parameters on its processes and the electrical network were performed. To compensate for this source of asymmetry for transmission lines longer than 100 km, a relatively simple technical means was proposed and implemented—phase transposition (change of the mutual location of phase wires in space). However, at the same time transposition causes additional capital costs in construction and reduces reliability during operation, so when designing a specific transmission line, extra-high-voltage is desirable to evaluate the effectiveness of the use of this measure in the real electricity network. Thus, under certain conditions, even for a transmission line 600 km in length, it was possible to perform either an incomplete transposition cycle, or abandon this measure altogether.

Suggested Citation

  • Alaa Khasawneh & Mohamed Qawaqzeh & Vladislav Kuchanskyy & Olena Rubanenko & Oleksandr Miroshnyk & Taras Shchur & Marcin Drechny, 2021. "Optimal Determination Method of the Transposition Steps of An Extra-High Voltage Power Transmission Line," Energies, MDPI, vol. 14(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6791-:d:658804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Youjie Ma & Xiaotong Sun & Xuesong Zhou, 2020. "Research on D-STATCOM Double Closed-Loop Control Method Based on Improved First-Order Linear Active Disturbance Rejection Technology," Energies, MDPI, vol. 13(15), pages 1-19, August.
    2. Manuel Ayala-Chauvin & Bahodurjon S. Kavrakov & Jorge Buele & José Varela-Aldás, 2021. "Static Reactive Power Compensator Design, Based on Three-Phase Voltage Converter," Energies, MDPI, vol. 14(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasil Olshanskyi & Serhii Kharchenko & Farida Kharchenko & Stepan Kovalyshyn & Taras Shchur & Yuriy Gabriel & Patrycja Bałdowska-Witos & Andrzej Tomporowski & Robert Kasner, 2022. "About Calculation and Forecast of Temperature in the Layer Cell of Self-Heating of Raw Materials in a Silo," Sustainability, MDPI, vol. 14(21), pages 1-8, November.
    2. Huthaifa A. Al_Issa & Marcin Drechny & Issam Trrad & Mohamed Qawaqzeh & Vladislav Kuchanskyy & Olena Rubanenko & Stepan Kudria & Petro Vasko & Oleksandr Miroshnyk & Taras Shchur, 2022. "Assessment of the Effect of Corona Discharge on Synchronous Generator Self-Excitation," Energies, MDPI, vol. 15(6), pages 1-21, March.
    3. Oleksandr Miroshnyk & Oleksandr Moroz & Taras Shchur & Andrii Chepizhnyi & Mohamed Qawaqzeh & Sławomir Kocira, 2023. "Investigation of Smart Grid Operation Modes with Electrical Energy Storage System," Energies, MDPI, vol. 16(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Binkowski & Marek Nowak & Stanisław Piróg, 2022. "Power Supply and Reactive Power Compensation of a Single-Phase Higher Frequency On-Board Grid with Photovoltaic Inverter," Energies, MDPI, vol. 15(7), pages 1-16, April.
    2. Feng-Chang Gu & Hung-Cheng Chen, 2021. "An Anti-Fluctuation Compensator Design and Its Control Strategy for Wind Farm System," Energies, MDPI, vol. 14(19), pages 1-16, October.
    3. David Rivera & Daniel Guillen & Jonathan C. Mayo-Maldonado & Jesus E. Valdez-Resendiz & Gerardo Escobar, 2021. "Power Grid Dynamic Performance Enhancement via STATCOM Data-Driven Control," Mathematics, MDPI, vol. 9(19), pages 1-21, September.
    4. Miao Zhang & Keyu Zhuang & Tong Zhao & Xianli Chen & Jingze Xue & Zheng Qiao & Shuai Cui & Yunlong Gao, 2022. "Bus Voltage Control of Photovoltaic Grid Connected Inverter Based on Adaptive Linear Active Disturbance Rejection," Energies, MDPI, vol. 15(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6791-:d:658804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.