IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6767-d658496.html
   My bibliography  Save this article

Self-Correcting Virtual Current Sensor Based on the Modified Luenberger Observer for Fault-Tolerant Induction Motor Drive

Author

Listed:
  • Michal Adamczyk

    (Department of Electrical Machines, Drives and Measurements, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland)

  • Teresa Orlowska-Kowalska

    (Department of Electrical Machines, Drives and Measurements, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland)

Abstract

Fault-tolerant control (FTC) solutions are increasingly being used in modern drive systems with AC motors. Such systems provide a higher degree of security and solutions that allow the on-line detection and localization of failures, as well as the switching of the control mode to a mode that allows us to continue the operation or safely stop the drive system. As the current sensors (CSs) are necessary to ensure precise control of the AC motors, in the event of their failure, one of two strategies can be used—hardware or software redundancy. The first strategy requires the use of additional measuring sensors. For this reason, the algorithmic solution, based on the Luenberger Observer (LO), has been proposed in this article as one of the software redundancy methods. In contrast to methods presented in the literature, the proposed solution allows one not only to compensate the stator current in a phase with a faulty CS, but also to adjust the correction of current estimation based on a measured signal in the other phase with a healthy CS. Extensive simulation studies in the direct rotor flux-oriented control (DRFOC) structure with the induction motor (IM) confirm the effectiveness of the proposed method. In addition, the proposed solution allows the drive system to be controlled even if all CSs are damaged.

Suggested Citation

  • Michal Adamczyk & Teresa Orlowska-Kowalska, 2021. "Self-Correcting Virtual Current Sensor Based on the Modified Luenberger Observer for Fault-Tolerant Induction Motor Drive," Energies, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6767-:d:658496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Obaid Mustafa & George Nikolakopoulos & Thomas Gustafsson, 2014. "Faults Classification Scheme for Three Phase Induction Motor," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 3(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Skowron & Krystian Teler & Michal Adamczyk & Teresa Orlowska-Kowalska, 2022. "Classification of Single Current Sensor Failures in Fault-Tolerant Induction Motor Drive Using Neural Network Approach," Energies, MDPI, vol. 15(18), pages 1-17, September.
    2. Usha Sengamalai & T. M. Thamizh Thentral & Palanisamy Ramasamy & Mohit Bajaj & Syed Sabir Hussain Bukhari & Ehab E. Elattar & Ahmed Althobaiti & Salah Kamel, 2022. "Mitigation of Circulating Bearing Current in Induction Motor Drive Using Modified ANN Based MRAS for Traction Application," Mathematics, MDPI, vol. 10(8), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6767-:d:658496. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.