IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6666-d656552.html
   My bibliography  Save this article

Efficiency of Different Balcony Slab Modernization Method in Retrofitted Multi-Family Buildings

Author

Listed:
  • Beata Sadowska

    (Department of Energy Efficient Construction and Geodesy, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland)

  • Piotr Bieranowski

    (Department of Mechanics and Basic Machine Design, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Street, 10-719 Olsztyn, Poland)

Abstract

Many buildings have considerable thermal bridges at the junction of balcony slabs with walls. To achieve the new EU directive targets related to energy efficiency, greater attention should be paid to such design details. This study analyzes the efficiency of traditional balcony slab modernization methods, the use of modern insulation materials and a new alternative system: an added self-supporting light balcony system (LKBD) in retrofitted large-panel buildings. The main objective was to capture cost-effective renovation methods from both the heat loss reduction perspectives and risk of surface condensation. The analyses, carried out in four buildings, have shown that at current costs, the thermal modernization of balconies is not economically efficient ( SPBT > 98.4 years). However, it is necessary because leaving the balcony slabs without insulation or only insulating them from the bottom carries the risk of surface condensation. The most cost-effective renovation method is to insulate the balcony slabs from below and above with the thickest possible XPS layer ( SPBT = 98.4 years; 107.4 years). Replacing XPS with modern material increases SPBT by almost 50%, for the LKBD system, SPBT = 269.2–281.5 years. More favorable energy and economic effects related to the reduction of balcony thermal bridges were achieved in the wall with lower insulation.

Suggested Citation

  • Beata Sadowska & Piotr Bieranowski, 2021. "Efficiency of Different Balcony Slab Modernization Method in Retrofitted Multi-Family Buildings," Energies, MDPI, vol. 14(20), pages 1-28, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6666-:d:656552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6666/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beata Sadowska & Joanna Piotrowska-Woroniak & Grzegorz Woroniak & Wiesław Sarosiek, 2022. "Energy and Economic Efficiency of the Thermomodernization of an Educational Building and Reduction of Pollutant Emissions—A Case Study," Energies, MDPI, vol. 15(8), pages 1-31, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6666-:d:656552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.