IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6623-d655698.html
   My bibliography  Save this article

Mechanical Switch Based Adaptive Fault Ride-through Strategy for Power Quality Improvement Device

Author

Listed:
  • Yu Shen

    (Electric Power Research Institute State Grid Hubei Electric Power Co., Ltd., Wuhan 430077, China)

  • Wei Hu

    (Electric Power Research Institute State Grid Hubei Electric Power Co., Ltd., Wuhan 430077, China)

  • Yaoyao Xiao

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Ganghua Zhang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Mingyu Han

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Fan Yang

    (Electric Power Research Institute State Grid Hubei Electric Power Co., Ltd., Wuhan 430077, China)

  • Wenping Zuo

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Cascaded H-bridge power quality improving device (PQID) has garnered extensive attention for its flexible electric energy conversion and fast voltage response. However, the failure rate of PQID is relatively high due to the use of large numbers of power electronic devices. This paper proposes a mechanical-switch based adaptive fault ride-through strategy for improving the operational stability and power supply reliability of PQID. According to the features of the topology and working principle of PQID, this paper summarized the types of internal faults and analyzed the characteristics of different types of faults. Based on the shortcomings of existing mechanical switches as a bypass method, corresponding adaptive fault ride-through strategies are proposed for different types of faults, and a comprehensive simulation test has been carried out. The results show that the proposed strategy can adaptively ride through unit faults and effectively improve the output waveform quality during the ride through time.

Suggested Citation

  • Yu Shen & Wei Hu & Yaoyao Xiao & Ganghua Zhang & Mingyu Han & Fan Yang & Wenping Zuo, 2021. "Mechanical Switch Based Adaptive Fault Ride-through Strategy for Power Quality Improvement Device," Energies, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6623-:d:655698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Zhang & Xiaohui Song & Yong Li & Zilong Zeng & Chenchen Yong & Denis Sidorov & Xia Lv, 2020. "Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for Active Distribution Network Considering Load Flexibility," Energies, MDPI, vol. 13(22), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed M. Abd-El Wahab & Salah Kamel & Mohamed H. Hassan & Mohamed I. Mosaad & Tarek A. AbdulFattah, 2022. "Optimal Reactive Power Dispatch Using a Chaotic Turbulent Flow of Water-Based Optimization Algorithm," Mathematics, MDPI, vol. 10(3), pages 1-26, January.
    2. Lenin Kanagasabai, 2022. "Novel Western Jackdaw search, antrostomus swarm and Indian ethnic vedic teaching: inspired optimization algorithms for real power loss diminishing and voltage consistency growth," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2895-2919, December.
    3. Lu, Jun & Liu, Tianqi & He, Chuan & Nan, Lu & Hu, Xiaotong, 2021. "Robust day-ahead coordinated scheduling of multi-energy systems with integrated heat-electricity demand response and high penetration of renewable energy," Renewable Energy, Elsevier, vol. 178(C), pages 466-482.
    4. Insu Kim & Beopsoo Kim & Denis Sidorov, 2022. "Machine Learning for Energy Systems Optimization," Energies, MDPI, vol. 15(11), pages 1-8, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6623-:d:655698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.