IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6591-d655092.html
   My bibliography  Save this article

Transformer-Less Switched-Capacitor Quasi-Switched Boost DC-DC Converter

Author

Listed:
  • Truong-Duy Duong

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Minh-Khai Nguyen

    (Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 700000, Vietnam)

  • Tan-Tai Tran

    (Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

  • Young-Cheol Lim

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Joon-Ho Choi

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

Abstract

In this article, a quasi-switched boost converter based on the switched-capacitor technique with high step-up voltage capability is dealt with and analyzed. The proposed converter offers a simple structure and low voltage stress on the semiconductor elements with intrinsic small duty cycle. An inductor of the proposed converter is connected in series with the input voltage source; therefore, continuous input current ripple is attainable. In addition, the efficiency of the proposed converter is also improved. A detailed steady-state analysis is discussed to identify the salient features of the switched-capacitor-based quasi-switched boost DC-DC converter. The performance of the converter is compared against similar existing high boost DC-DC converters. Finally, the switched-capacitor-based quasi-switched boost DC-DC converter is investigated by experimental verification.

Suggested Citation

  • Truong-Duy Duong & Minh-Khai Nguyen & Tan-Tai Tran & Young-Cheol Lim & Joon-Ho Choi, 2021. "Transformer-Less Switched-Capacitor Quasi-Switched Boost DC-DC Converter," Energies, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6591-:d:655092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6591/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuidong Xu & Ka Wai Eric Cheng, 2022. "Topology and Formation of Current Source Step Down Resonant Switched Inductor Converters," Energies, MDPI, vol. 15(5), pages 1-20, February.
    2. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Ping-Sheng Huang, 2023. "Analysis and Design of a New High Voltage Gain Interleaved DC–DC Converter with Three-Winding Coupled Inductors for Renewable Energy Systems," Energies, MDPI, vol. 16(9), pages 1-23, May.
    3. Truong-Duy Duong & Minh-Khai Nguyen & Tan-Tai Tran & Dai-Van Vo & Young-Cheol Lim & Joon-Ho Choi, 2022. "Topology Review of Three-Phase Two-Level Transformerless Photovoltaic Inverters for Common-Mode Voltage Reduction," Energies, MDPI, vol. 15(9), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6591-:d:655092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.