IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6571-d654681.html
   My bibliography  Save this article

Structural Modeling and Failure Assessment of Spar-Type Substructure for 5 MW Floating Offshore Wind Turbine under Extreme Conditions in the East Sea

Author

Listed:
  • Kwangtae Ha

    (Department of Floating Offshore Wind Energy System, University of Ulsan, Ulsan 44610, Korea
    Kwangtae Ha and Jun-Bae Kim equally contributed to this work as first authors.)

  • Jun-Bae Kim

    (Fuel Gas Technology Center, Korea Marine Equipment Research Institute, Busan 49111, Korea
    Kwangtae Ha and Jun-Bae Kim equally contributed to this work as first authors.)

  • Youngjae Yu

    (Department of Floating Offshore Wind Energy System, University of Ulsan, Ulsan 44610, Korea)

  • Hyoung-Seock Seo

    (School of Naval Architecture & Ocean Engineering, University of Ulsan, Ulsan 44610, Korea)

Abstract

Not only the driving for offshore wind energy capacity of 12 GW by Korea’s Renewable Energy 2030 plan but also the need for the rejuvenation of existing world-class shipbuilders’ infrastructures is drawing much attention to offshore wind energy in Korea, especially to the diverse substructures. Considering the deep-sea environment in the East Sea, this paper presents detailed modeling and analysis of spar-type substructure for a 5 MW floating offshore wind turbine (FOWT). This process uses a fully coupled integrated load analysis, which was carried out using FAST, a widely used integrated load analysis software developed by NREL, coupled with an in-house hydrodynamic code (UOU code). The environmental design loads were calculated from data recorded over three years at the Ulsan Marine buoy point according to the ABS and DNVGL standards. The total 12 maximum cases from DLC 6.1 were selected to evaluate the structural integrity of the spar-type substructure under the three co-directional conditions (45°, 135°, and 315°) of wind and wave. A three-dimensional (3D) structural finite element (FE) model incorporating the wind turbine tower and floating structure bolted joint connection was constructed in FEGate (pre/post-structural analysis module based on MSC NASTRAN for ship and offshore structures). The FEM analysis applied the external loads such as the structural loads due to the inertial acceleration, buoyancy, and gravity, and the environmental loads due to the wind, wave, and current. The three-dimensional FE analysis results from the MSC Nastran software showed that the designed spar-type substructure had enough strength to endure the extreme limitation in the East Sea based on the von Mises criteria. The current process of this study would be applicable to the other substructures such as the submersible type.

Suggested Citation

  • Kwangtae Ha & Jun-Bae Kim & Youngjae Yu & Hyoung-Seock Seo, 2021. "Structural Modeling and Failure Assessment of Spar-Type Substructure for 5 MW Floating Offshore Wind Turbine under Extreme Conditions in the East Sea," Energies, MDPI, vol. 14(20), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6571-:d:654681
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Villoslada & Matilde Santos & María Tomás-Rodríguez, 2021. "General Methodology for the Identification of Reduced Dynamic Models of Barge-Type Floating Wind Turbines," Energies, MDPI, vol. 14(13), pages 1-16, June.
    2. Antonio Galán-Lavado & Matilde Santos, 2021. "Analysis of the Effects of the Location of Passive Control Devices on the Platform of a Floating Wind Turbine," Energies, MDPI, vol. 14(10), pages 1-19, May.
    3. Shi, Wei & Han, Jonghoon & Kim, Changwan & Lee, Daeyong & Shin, Hyunkyoung & Park, Hyunchul, 2015. "Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea," Renewable Energy, Elsevier, vol. 74(C), pages 406-413.
    4. I-Wen Chen & Bao-Leng Wong & Yu-Hung Lin & Shiu-Wu Chau & Hsin-Haou Huang, 2016. "Design and Analysis of Jacket Substructures for Offshore Wind Turbines," Energies, MDPI, vol. 9(4), pages 1-24, April.
    5. Carlo Ruzzo & Giuseppe Failla & Maurizio Collu & Vincenzo Nava & Vincenzo Fiamma & Felice Arena, 2016. "Operational Modal Analysis of a Spar-Type Floating Platform Using Frequency Domain Decomposition Method," Energies, MDPI, vol. 9(11), pages 1-15, October.
    6. McKenna, R. & Hollnaicher, S. & Ostman v. d. Leye, P. & Fichtner, W., 2015. "Cost-potentials for large onshore wind turbines in Europe," Energy, Elsevier, vol. 83(C), pages 217-229.
    7. Francisco Pimenta & Carlo Ruzzo & Giuseppe Failla & Felice Arena & Marco Alves & Filipe Magalhães, 2020. "Dynamic Response Characterization of Floating Structures Based on Numerical Simulations," Energies, MDPI, vol. 13(21), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matilde Santos, 2022. "Special Issue on Dynamics and Control of Offshore and Onshore Wind Turbine Structures," Energies, MDPI, vol. 15(8), pages 1-3, April.
    2. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2015. "Onshore wind energy in Baden-Württemberg: a bottom-up economic assessment of the socio-technical potential," Working Paper Series in Production and Energy 7, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    3. Seo, Junwon & Pokhrel, Jharna & Hu, Jong Wan, 2022. "Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. González-Aparicio, I. & Monforti, F. & Volker, P. & Zucker, A. & Careri, F. & Huld, T. & Badger, J., 2017. "Simulating European wind power generation applying statistical downscaling to reanalysis data," Applied Energy, Elsevier, vol. 199(C), pages 155-168.
    5. Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Scherhaufer, Patrick & Schmidt, Johannes, 2016. "Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance," Energy Policy, Elsevier, vol. 98(C), pages 49-61.
    6. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    7. Tsung-Yueh Lin & Yi-Qing Zhao & Hsin-Haou Huang, 2020. "Representative Environmental Condition for Fatigue Analysis of Offshore Jacket Substructure," Energies, MDPI, vol. 13(20), pages 1-20, October.
    8. Veronika Valašková & Jozef Vlček & Daniel Papán, 2020. "Determination of the Small-Scale Physical Model Parameters of Pavement Structure," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    9. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2017. "Temporally-explicit and spatially-resolved global onshore wind energy potentials," Energy, Elsevier, vol. 131(C), pages 207-217.
    10. Liu, Fa & Sun, Fubao & Wang, Xunming, 2023. "Impact of turbine technology on wind energy potential and CO2 emission reduction under different wind resource conditions in China," Applied Energy, Elsevier, vol. 348(C).
    11. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2019. "Global levelised cost of electricity from offshore wind," Energy, Elsevier, vol. 189(C).
    12. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    13. Thanh-Tuan Tran & Sangkyun Kang & Jang-Ho Lee & Daeyong Lee, 2021. "Directional Bending Performance of 4-Leg Jacket Substructure Supporting a 3MW Offshore Wind Turbine," Energies, MDPI, vol. 14(9), pages 1-17, May.
    14. Francisco Pimenta & Carlo Ruzzo & Giuseppe Failla & Felice Arena & Marco Alves & Filipe Magalhães, 2020. "Dynamic Response Characterization of Floating Structures Based on Numerical Simulations," Energies, MDPI, vol. 13(21), pages 1-18, October.
    15. Thomas Poulsen & Charlotte Bay Hasager, 2017. "The (R)evolution of China: Offshore Wind Diffusion," Energies, MDPI, vol. 10(12), pages 1-32, December.
    16. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    17. Sliz-Szkliniarz, B. & Eberbach, J. & Hoffmann, B. & Fortin, M., 2019. "Assessing the cost of onshore wind development scenarios: Modelling of spatial and temporal distribution of wind power for the case of Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 514-531.
    18. Dupré la Tour, Marie-Alix, 2023. "Photovoltaic and wind energy potential in Europe – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    19. Jung, Christopher & Schindler, Dirk, 2022. "On the influence of wind speed model resolution on the global technical wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Slednev, Viktor & Bertsch, Valentin & Ruppert, Manuel & Fichtner, Wolf, 2017. "Highly resolved optimal renewable allocation planning in power systems under consideration of dynamic grid topology," MPRA Paper 79706, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6571-:d:654681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.