CO 2 Convective Dissolution in Oil-Saturated Unconsolidated Porous Media at Reservoir Conditions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pengfei Lv & Yu Liu & Lanlan Jiang & Yongchen Song & Bohao Wu & Jiafei Zhao & Yi Zhang, 2016. "Experimental determination of wettability and heterogeneity effect on CO 2 distribution in porous media," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(3), pages 401-415, June.
- Pengfei Lv & Yu Liu & Junlin Chen & Lanlan Jiang & Bohao Wu & Shuyang Liu & Yongchen Song, 2017. "Pore†scale investigation of effects of heterogeneity on CO2 geological storage using stratified sand packs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(6), pages 972-987, December.
- Carelle Thomas & Sam Dehaeck & Anne De Wit, 2018. "Convective dissolution of CO2 in water and salt solutions," ULB Institutional Repository 2013/270512, ULB -- Universite Libre de Bruxelles.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
- Pengfei Lv & Yu Liu & Junlin Chen & Lanlan Jiang & Bohao Wu & Shuyang Liu & Yongchen Song, 2017. "Pore†scale investigation of effects of heterogeneity on CO2 geological storage using stratified sand packs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(6), pages 972-987, December.
- Wang, Xin & Li, Shaohua & Tong, Baocai & Jiang, Lanlan & Lv, Pengfei & Zhang, Yi & Liu, Yu & Song, Yongchen, 2024. "Multiscale wettability characterization under CO2 geological storage conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Widuramina Sameendranath Amarasinghe & Ingebret Fjelde & Anna Maija Nørstebø Flaata, 2021. "Visual investigation of CO2 dissolution and convection in heterogeneous porous media at reservoir temperature and pressure conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 342-359, April.
- Eigbe, Patrick A. & Ajayi, Olatunbosun O. & Olakoyejo, Olabode T. & Fadipe, Opeyemi L. & Efe, Steven & Adelaja, Adekunle O., 2023. "A general review of CO2 sequestration in underground geological formations and assessment of depleted hydrocarbon reservoirs in the Niger Delta," Applied Energy, Elsevier, vol. 350(C).
More about this item
Keywords
convection; porous media; reservoir conditions; oil; CO 2 dissolution; 3-dimensional column;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:233-:d:474646. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.