IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i1p190-d473625.html
   My bibliography  Save this article

Techno-Economic Feasibility Analysis of Grid-Connected Microgrid Design by Using a Modified Multi-Strategy Fusion Artificial Bee Colony Algorithm

Author

Listed:
  • Sweta Singh

    (Department of Electrical Engineering, Manipal University Jaipur, Janpur 303007, India)

  • Adam Slowik

    (Department of Electronics and Computer Science, Koszalin University of Technology, 75-453 Koszalin, Poland)

  • Neeraj Kanwar

    (Department of Electrical Engineering, Manipal University Jaipur, Janpur 303007, India)

  • Nand K. Meena

    (School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK)

Abstract

The present work investigates the techno-economic solution that can address the problem of rural electrification. To maintain a continuous power supply to this village area, a grid-connected microgrid system was designed that consists of solar photovoltaic (SPV) and battery energy storage systems (BESS). The recently introduced multi-strategy fusion artificial bee colony (MFABC) algorithm was hybridized with the simulated annealing approach and is referred to as the MFABC+ algorithm. This was employed to determine the optimal sizing of different components comprising the integrated system as well as to maximize the techno-economic objectives. For validation, the simulation results obtained by the MFABC+ algorithm are compared with the results obtained using HOMER software, the particle swarm optimization algorithms and the original MFABC algorithm. It was revealed that the MFABC+ algorithm has a better convergence rate and the potential ability to provide compromising results in comparison to these existing optimization tools. It was also discovered through the comprehensive evaluation that the proposed system has the potential capability to meet the electricity demand of the village for 24 × 7 at the lowest levelized cost of electricity.

Suggested Citation

  • Sweta Singh & Adam Slowik & Neeraj Kanwar & Nand K. Meena, 2021. "Techno-Economic Feasibility Analysis of Grid-Connected Microgrid Design by Using a Modified Multi-Strategy Fusion Artificial Bee Colony Algorithm," Energies, MDPI, vol. 14(1), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:190-:d:473625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    2. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    3. Upadhyay, Subho & Sharma, M.P., 2016. "Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India," Energy, Elsevier, vol. 94(C), pages 352-366.
    4. Nacer, T. & Hamidat, A. & Nadjemi, O. & Bey, M., 2016. "Feasibility study of grid connected photovoltaic system in family farms for electricity generation in rural areas," Renewable Energy, Elsevier, vol. 96(PA), pages 305-318.
    5. Sanajaoba Singh, Sarangthem & Fernandez, Eugene, 2018. "Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system," Energy, Elsevier, vol. 143(C), pages 719-731.
    6. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    7. Chauhan, Anurag & Saini, R.P., 2016. "Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India," Renewable Energy, Elsevier, vol. 94(C), pages 587-604.
    8. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    9. Bordin, Chiara & Anuta, Harold Oghenetejiri & Crossland, Andrew & Gutierrez, Isabel Lascurain & Dent, Chris J. & Vigo, Daniele, 2017. "A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration," Renewable Energy, Elsevier, vol. 101(C), pages 417-430.
    10. Li, Bei & Roche, Robin & Miraoui, Abdellatif, 2017. "Microgrid sizing with combined evolutionary algorithm and MILP unit commitment," Applied Energy, Elsevier, vol. 188(C), pages 547-562.
    11. Ramli, Makbul A.M. & Hiendro, Ayong & Twaha, Ssennoga, 2015. "Economic analysis of PV/diesel hybrid system with flywheel energy storage," Renewable Energy, Elsevier, vol. 78(C), pages 398-405.
    12. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2016. "The potential role of solid biomass for rural electrification: A techno economic analysis for a hybrid microgrid in India," Applied Energy, Elsevier, vol. 169(C), pages 370-383.
    13. Castellanos, J.G. & Walker, M. & Poggio, D. & Pourkashanian, M. & Nimmo, W., 2015. "Modelling an off-grid integrated renewable energy system for rural electrification in India using photovoltaics and anaerobic digestion," Renewable Energy, Elsevier, vol. 74(C), pages 390-398.
    14. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    15. Ramchandran, Neeraj & Pai, Rajesh & Parihar, Amit Kumar Singh, 2016. "Feasibility assessment of Anchor-Business-Community model for off-grid rural electrification in India," Renewable Energy, Elsevier, vol. 97(C), pages 197-209.
    16. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahbazbegian, Vahid & Dehghani, Farnam & Shafiyi, Mohammad Agha & Shafie-khah, Miadreza & Laaksonen, Hannu & Ameli, Hossein, 2023. "Techno-economic assessment of energy storage systems in multi-energy microgrids utilizing decomposition methodology," Energy, Elsevier, vol. 283(C).
    2. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Mahmoud M. Gamil & Soichirou Ueda & Akito Nakadomari & Keifa Vamba Konneh & Tomonobu Senjyu & Ashraf M. Hemeida & Mohammed Elsayed Lotfy, 2022. "Optimal Multi-Objective Power Scheduling of a Residential Microgrid Considering Renewable Sources and Demand Response Technique," Sustainability, MDPI, vol. 14(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Jitendra & Suryakiran, B.V. & Verma, Ashu & Bhatti, T.S., 2019. "Analysis of techno-economic viability with demand response strategy of a grid-connected microgrid model for enhanced rural electrification in Uttar Pradesh state, India," Energy, Elsevier, vol. 178(C), pages 176-185.
    2. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    3. Parihar, Amit Kumar Singh & Sethi, Virendra & Banerjee, Rangan, 2019. "Sizing of biomass based distributed hybrid power generation systems in India," Renewable Energy, Elsevier, vol. 134(C), pages 1400-1422.
    4. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    5. Das, Barun K. & Zaman, Forhad, 2019. "Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection," Energy, Elsevier, vol. 169(C), pages 263-276.
    6. Pal, Ankit & Bhattacharjee, Subhadeep, 2020. "Effectuation of biogas based hybrid energy system for cost-effective decentralized application in small rural community," Energy, Elsevier, vol. 203(C).
    7. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Das, Barun K. & Al-Abdeli, Yasir M. & Woolridge, Matthew, 2019. "Effects of battery technology and load scalability on stand-alone PV/ICE hybrid micro-grid system performance," Energy, Elsevier, vol. 168(C), pages 57-69.
    10. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    11. Ali Saleh Aziz & Mohammad Faridun Naim Tajuddin & Mohd Rafi Adzman & Makbul A. M. Ramli & Saad Mekhilef, 2019. "Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy," Sustainability, MDPI, vol. 11(3), pages 1-26, January.
    12. Blessing Ugwoke & Adedoyin Adeleke & Stefano P. Corgnati & Joshua M. Pearce & Pierluigi Leone, 2020. "Decentralized Renewable Hybrid Mini-Grids for Rural Communities: Culmination of the IREP Framework and Scale up to Urban Communities," Sustainability, MDPI, vol. 12(18), pages 1-26, September.
    13. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    14. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    15. Jeslin Drusila Nesamalar, J. & Venkatesh, P. & Charles Raja, S., 2017. "The drive of renewable energy in Tamilnadu: Status, barriers and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 115-124.
    16. Lozano, Lorafe & Querikiol, Edward M. & Abundo, Michael Lochinvar S. & Bellotindos, Luzvisminda M., 2019. "Techno-economic analysis of a cost-effective power generation system for off-grid island communities: A case study of Gilutongan Island, Cordova, Cebu, Philippines," Renewable Energy, Elsevier, vol. 140(C), pages 905-911.
    17. Cano, Antonio & Arévalo, Paul & Jurado, Francisco, 2020. "Energy analysis and techno-economic assessment of a hybrid PV/HKT/BAT system using biomass gasifier: Cuenca-Ecuador case study," Energy, Elsevier, vol. 202(C).
    18. Li, Qian & Loy-Benitez, Jorge & Nam, KiJeon & Hwangbo, Soonho & Rashidi, Jouan & Yoo, ChangKyoo, 2019. "Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks," Energy, Elsevier, vol. 178(C), pages 277-292.
    19. Demirci, Alpaslan & Akar, Onur & Ozturk, Zafer, 2022. "Technical-environmental-economic evaluation of biomass-based hybrid power system with energy storage for rural electrification," Renewable Energy, Elsevier, vol. 195(C), pages 1202-1217.
    20. Cai, Wei & Li, Xing & Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A. & Alhuyi Nazari, Mohammad & Bui, Dieu Tien, 2020. "Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:190-:d:473625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.