IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6093-d642307.html
   My bibliography  Save this article

Living in the “Age of Humans”. Envisioning CAD Architecture for the Challenges of the Anthropocene—Energy, Environment, and Well-Being

Author

Listed:
  • Krystyna Januszkiewicz

    (Faculty of Architecture, West Pomeranian University of Technology in Szczecin, al. Piastów 17, 70-310 Szczecin, Poland)

  • Natalia Paszkowska-Kaczmarek

    (Faculty of Architecture, West Pomeranian University of Technology in Szczecin, al. Piastów 17, 70-310 Szczecin, Poland)

  • Fekadu Aduna Duguma

    (Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma P.O. Box 378, Ethiopia
    Department of Civil Engineering, College of Engineering and Technology, Nekemte Campus, Wollega University, Nekemte P.O. Box 395, Ethiopia)

  • Karol G. Kowalski

    (Faculty of Architecture, West Pomeranian University of Technology in Szczecin, al. Piastów 17, 70-310 Szczecin, Poland)

Abstract

The Anthropocene thesis poses new challenges to human activity on the planet. These challenges also apply to the built environment. Climate change will increase existing threats, and create new ones, for both human and natural systems. Above all, the built environment is expected to provide structural stability, access to water necessary for life, and safe production of clean energy. This research-by-design was focused on designing an adaptive built environment for Anthropocene societies and the maintenance of their well-being, and on envisioning and conceptualizing new architectural solutions based on multidisciplinary knowledge and CAD parametric design methods and tools. The conceptual designs are the result of these studies. These visions show how wind loads can be reduced, water can be stored, diverse energy sources can be integrated into one work of architecture, and thermal comfort can be provided to support local communities and the life of the environment in the belief that the coexistence of species on the planet will happen. They also illustrate how humanity will be able to use the Earth and its atmosphere as an energy producer and conductor and create a global, wireless, non-commercial energy network, accessible to all.

Suggested Citation

  • Krystyna Januszkiewicz & Natalia Paszkowska-Kaczmarek & Fekadu Aduna Duguma & Karol G. Kowalski, 2021. "Living in the “Age of Humans”. Envisioning CAD Architecture for the Challenges of the Anthropocene—Energy, Environment, and Well-Being," Energies, MDPI, vol. 14(19), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6093-:d:642307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oded Berger-Tal & Jonathan Nathan & Ehud Meron & David Saltz, 2014. "The Exploration-Exploitation Dilemma: A Multidisciplinary Framework," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    2. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    3. Bamati, Narges & Raoofi, Ali, 2020. "Development level and the impact of technological factor on renewable energy production," Renewable Energy, Elsevier, vol. 151(C), pages 946-955.
    4. Creutzig, Felix, 2020. "Limits to Liberalism: Considerations for the Anthropocene," Ecological Economics, Elsevier, vol. 177(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Yi, Zonggen & Luo, Yusheng & Westover, Tyler & Katikaneni, Sravya & Ponkiya, Binaka & Sah, Suba & Mahmud, Sadab & Raker, David & Javaid, Ahmad & Heben, Michael J. & Khanna, Raghav, 2022. "Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    3. Dario Blanco-Fernandez & Stephan Leitner & Alexandra Rausch, 2022. "Interactions between the individual and the group level in organizations: The case of learning and autonomous group adaptation," Papers 2203.09162, arXiv.org.
    4. Sittijunda, Sureewan & Reungsang, Alissara, 2020. "Valorization of crude glycerol into hydrogen, 1,3-propanediol, and ethanol in an up-flow anaerobic sludge blanket (UASB) reactor under thermophilic conditions," Renewable Energy, Elsevier, vol. 161(C), pages 361-372.
    5. Ettore F. Bompard & Stefania Conti & Marcelo J. Masera & Gian Giuseppe Soma, 2024. "A New Electricity Infrastructure for Fostering Urban Sustainability: Challenges and Emerging Trends," Energies, MDPI, vol. 17(22), pages 1-18, November.
    6. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    7. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    8. Huiqian Guo & ELSaeed Saad ELSihy & Zhirong Liao & Xiaoze Du, 2021. "A Comparative Study on the Performance of Single and Multi-Layer Encapsulated Phase Change Material Packed-Bed Thermocline Tanks," Energies, MDPI, vol. 14(8), pages 1-24, April.
    9. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    10. Lee, Chien-Chiang & Chen, Mei-Ping & Yuan, Zihao, 2023. "Is information and communication technology a driver for renewable energy?," Energy Economics, Elsevier, vol. 124(C).
    11. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    12. Ma, Weiwu & Fang, Song & Liu, Gang, 2017. "Hybrid optimization method and seasonal operation strategy for distributed energy system integrating CCHP, photovoltaic and ground source heat pump," Energy, Elsevier, vol. 141(C), pages 1439-1455.
    13. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    14. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    15. Antonucci, V. & Branchini, L. & Brunaccini, G. & De Pascale, A. & Ferraro, M. & Melino, F. & Orlandini, V. & Sergi, F., 2017. "Thermal integration of a SOFC power generator and a Na–NiCl2 battery for CHP domestic application," Applied Energy, Elsevier, vol. 185(P2), pages 1256-1267.
    16. Ito, Masakazu & Takano, Akihisa & Shinji, Takao & Yagi, Takahiro & Hayashi, Yasuhiro, 2017. "Electricity adjustment for capacity market auction by a district heating and cooling system," Applied Energy, Elsevier, vol. 206(C), pages 623-633.
    17. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
    18. Abdulazeez Rotimi & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2018. "Optimum Size Selection of CHP Retrofitting in Existing UK Hotel Building," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    19. Xueying Song & Hongyu Lin & Gejirifu De & Hanfang Li & Xiaoxu Fu & Zhongfu Tan, 2020. "An Energy Optimal Dispatching Model of an Integrated Energy System Based on Uncertain Bilevel Programming," Energies, MDPI, vol. 13(2), pages 1-24, January.
    20. Radwa Salem & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2018. "Comparison and Evaluation of the Potential Energy, Carbon Emissions, and Financial Impacts from the Incorporation of CHP and CCHP Systems in Existing UK Hotel Buildings," Energies, MDPI, vol. 11(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6093-:d:642307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.