IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6070-d641724.html
   My bibliography  Save this article

Study on the Motion Characteristics of 10 MW Superconducting Floating Offshore Wind Turbine Considering 2nd Order Wave Effect

Author

Listed:
  • Youngjae Yu

    (Department of Floating Offshore Wind Energy System, University of Ulsan, Ulsan 44610, Korea)

  • Thanh Dam Pham

    (Institute of Theoretical and Applied Research, Duy Tan University, Hanoi 100000, Vietnam
    Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam)

  • Hyunkyoung Shin

    (Department of Floating Offshore Wind Energy System, University of Ulsan, Ulsan 44610, Korea)

  • Kwangtae Ha

    (Department of Floating Offshore Wind Energy System, University of Ulsan, Ulsan 44610, Korea)

Abstract

Recently, several countries have made commitments to move to a net-zero emission by the year 2050 in a response to climate change. Among various renewable energy systems to realize the target, wind energy system has been gaining much attention as a favorable alternative source to fossil fuel energy. In particular, many floating offshore wind turbines (FOWT) are expected to be installed because of vast installation resources without water depth limit conditions, stable and strong wind resources, relatively low constraints on noise emission, and space restriction compared to onshore wind turbines. In this study, a 10 MW superconducting floating offshore wind turbine was modeled with a 1/90 scale ratio and was experimentally tested at the Ocean Engineering Widetank of the University of Ulsan. The model calibration of the scaled model was performed with free decay test and showed a good correlation with simulation results calculated from FAST V8 of NREL. The motion characteristics of the 10 MW superconducting FOWT semi-submersible type platform was investigated under regular waves and irregular waves through the comparison of model test data and simulation results. The study on the motion characteristics of the model showed that the simulation considering the 2nd order wave effects to hydrodynamic forces and moments provided better accuracy close to the model test data.

Suggested Citation

  • Youngjae Yu & Thanh Dam Pham & Hyunkyoung Shin & Kwangtae Ha, 2021. "Study on the Motion Characteristics of 10 MW Superconducting Floating Offshore Wind Turbine Considering 2nd Order Wave Effect," Energies, MDPI, vol. 14(19), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6070-:d:641724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6070/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyeonjeong Ahn & Hyunkyoung Shin, 2020. "Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves," Energies, MDPI, vol. 13(10), pages 1-17, May.
    2. Ga-Eun Jung & Hae-Jin Sung & Minh-Chau Dinh & Minwon Park & Hyunkyoung Shin, 2021. "A Comparative Analysis of Economics of PMSG and SCSG Floating Offshore Wind Farms," Energies, MDPI, vol. 14(5), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    2. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ga-Eun Jung & Hae-Jin Sung & Minh-Chau Dinh & Minwon Park & Hyunkyoung Shin, 2021. "A Comparative Analysis of Economics of PMSG and SCSG Floating Offshore Wind Farms," Energies, MDPI, vol. 14(5), pages 1-18, March.
    2. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Yang, Yang & Fu, Jianbin & Shi, Zhaobin & Ma, Lu & Yu, Jie & Fang, Fang & Chen, Shunhua & Lin, Zaibin & Li, Chun, 2023. "Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects," Renewable Energy, Elsevier, vol. 216(C).
    4. Barter, Garrett E. & Sethuraman, Latha & Bortolotti, Pietro & Keller, Jonathan & Torrey, David A., 2023. "Beyond 15 MW: A cost of energy perspective on the next generation of drivetrain technologies for offshore wind turbines," Applied Energy, Elsevier, vol. 344(C).
    5. Arabgolarcheh, Alireza & Micallef, Daniel & Benini, Ernesto, 2023. "The impact of platform motion phase differences on the power and load performance of tandem floating offshore wind turbines," Energy, Elsevier, vol. 284(C).
    6. Arabgolarcheh, Alireza & Micallef, Daniel & Rezaeiha, Abdolrahim & Benini, Ernesto, 2023. "Modelling of two tandem floating offshore wind turbines using an actuator line model," Renewable Energy, Elsevier, vol. 216(C).
    7. Bonaventura Tagliafierro & Madjid Karimirad & Iván Martínez-Estévez & José M. Domínguez & Giacomo Viccione & Alejandro J. C. Crespo, 2022. "Numerical Assessment of a Tension-Leg Platform Wind Turbine in Intermediate Water Using the Smoothed Particle Hydrodynamics Method," Energies, MDPI, vol. 15(11), pages 1-23, May.
    8. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6070-:d:641724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.