IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6040-d640954.html
   My bibliography  Save this article

Adaptive Impedance-Conditioned Phase-Locked Loop for the VSC Converter Connected to Weak Grid

Author

Listed:
  • Mostafa A. Hamood

    (Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M1 3BB, UK)

  • Ognjen Marjanovic

    (Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M1 3BB, UK)

  • Joaquin Carrasco

    (Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M1 3BB, UK)

Abstract

In this paper, an adaptive version of the impedance-conditioned phase-locked loop (IC-PLL), namely the adaptive IC-PLL (AIC-PLL), is proposed. The IC-PLL has recently been proposed to address the issue of synchronisation with a weak AC grid by supplementing the conventional synchronous reference frame phase-locked loop (SRF-PLL) with an additional virtual impedance term. The resulting IC-PLL aims to synchronise the converter to a remote and stronger point in the grid, hence increasing the upper bound on the achievable power transfer achieved by the VSC converter connected to the weak grid. However, the issue of the variable grid strength imposes another challenge in the operation of the IC-PLL. This is because the IC-PLL requires impedance estimation methods to estimate the value of the virtual impedance part. In AIC-PLL, the virtual impedance part is estimated by appending another dynamic loop in the exciting IC-PLL. In this method, an additional closed loop is involved so that the values of the virtual inductance and resistance are internally estimated and adapted. Hence, the VSC converter becomes effectively viable for the case of the grid strength variable, where the estimation of the grid impedance becomes unnecessary. The results show that the converter that relies on AIC-PLL has the ability to transfer power that is approximately equal to the theoretical maximum power while maintaining satisfactory dynamic performance.

Suggested Citation

  • Mostafa A. Hamood & Ognjen Marjanovic & Joaquin Carrasco, 2021. "Adaptive Impedance-Conditioned Phase-Locked Loop for the VSC Converter Connected to Weak Grid," Energies, MDPI, vol. 14(19), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6040-:d:640954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6040/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6040/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sungwook Lee & Junho Hong & Dohoon Kwon, 2024. "Development of a Series Braking Resistor to Eliminate Control Interference in Multi-Infeed HVDC Systems Considering the AC Three-Phase Fault—An Actual Case Study," Energies, MDPI, vol. 17(16), pages 1-19, August.
    2. Mohammad A. Bany Issa & Zaid A. Al Muala & Pastora M. Bello Bugallo, 2023. "Grid-Connected Renewable Energy Sources: A New Approach for Phase-Locked Loop with DC-Offset Removal," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    3. Longyue Yang & Tian Cao & Huapeng Chen & Xinwei Dong & Shuyuan Zhang, 2022. "Robust Control and Optimization Method for Single-Phase Grid-Connected Inverters Based on All-Pass-Filter Phase-Locked Loop in Weak Grid," Energies, MDPI, vol. 15(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6040-:d:640954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.