IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5669-d632073.html
   My bibliography  Save this article

Methods of Determining Pressure Drop in Internal Channels of a Hydraulic Motor

Author

Listed:
  • Pawel Sliwinski

    (Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, 80-233 Gdansk, Poland)

  • Piotr Patrosz

    (Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, 80-233 Gdansk, Poland)

Abstract

In this paper, new methods for determining the pressure drop in internal channels of a hydraulic motor are proposed and described. Mathematical models of pressure losses in internal channels have also been described. Experimental tests of the satellite motor were carried out according to one of the proposed methods. The tests were carried out for two liquids, i.e., water and mineral oil. Experimental studies have shown that at a high flow rate in the motor supplied with water the pressure losses are a dozen or so percent greater than in the motor supplied with oil. However, at low flow rates is the inverse, that is, the pressure losses in the motor supplied with water are about ten percent lower than in the motor supplied with oil. The CFD calculation of the pressure drop in the internal channel of the motor was also conducted. It was assumed that holes in the commutation unit plate are placed face to face and that the liquid did not cause changes in the working chambers’ volume. In this way, it has been proven that those simplified assumptions can have up to a 50% difference in relation to the experimental tests.

Suggested Citation

  • Pawel Sliwinski & Piotr Patrosz, 2021. "Methods of Determining Pressure Drop in Internal Channels of a Hydraulic Motor," Energies, MDPI, vol. 14(18), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5669-:d:632073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Patrosz, 2021. "Influence of Properties of Hydraulic Fluid on Pressure Peaks in Axial Piston Pumps’ Chambers," Energies, MDPI, vol. 14(13), pages 1-23, June.
    2. Pawel Sliwinski, 2021. "Determination of the Theoretical and Actual Working Volume of a Hydraulic Motor—Part II (The Method Based on the Characteristics of Effective Absorbency of the Motor)," Energies, MDPI, vol. 14(6), pages 1-20, March.
    3. Pawel Sliwinski, 2020. "Determination of the Theoretical and Actual Working Volume of a Hydraulic Motor," Energies, MDPI, vol. 13(22), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Osiński & Urszula Warzyńska, 2022. "FEM Strength Analysis of Circumferential Compensation with Integrated Lips in Gear Pumps," Energies, MDPI, vol. 15(7), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Javier Gamez-Montero & Ernest Bernat-Maso, 2022. "Taguchi Techniques as an Effective Simulation-Based Strategy in the Design of Numerical Simulations to Assess Contact Stress in Gerotor Pumps," Energies, MDPI, vol. 15(19), pages 1-24, September.
    2. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2021. "Advances in Fluid Power Systems," Energies, MDPI, vol. 14(24), pages 1-6, December.
    3. Piotr Osiński & Urszula Warzyńska, 2022. "FEM Strength Analysis of Circumferential Compensation with Integrated Lips in Gear Pumps," Energies, MDPI, vol. 15(7), pages 1-14, April.
    4. Piotr Osiński & Adam Deptuła & Marian A. Partyka, 2022. "Hydraulic Tests of the PZ0 Gear Micropump and the Importance Rank of Its Design and Operating Parameters," Energies, MDPI, vol. 15(9), pages 1-27, April.
    5. Pawel Sliwinski, 2021. "Determination of the Theoretical and Actual Working Volume of a Hydraulic Motor—Part II (The Method Based on the Characteristics of Effective Absorbency of the Motor)," Energies, MDPI, vol. 14(6), pages 1-20, March.
    6. Mirosław Przybysz & Marian Janusz Łopatka & Arkadiusz Rubiec & Piotr Krogul & Karol Cieślik & Marcin Małek, 2022. "Influence of Hydraulic Drivetrain Configuration on Kinematic Discrepancy and Energy Consumption during Obstacle Overcoming in a 6 × 6 All-Wheel Hydraulic Drive Vehicle," Energies, MDPI, vol. 15(17), pages 1-21, September.
    7. Marian Janusz Łopatka & Karol Cieślik & Piotr Krogul & Tomasz Muszyński & Mirosław Przybysz & Arkadiusz Rubiec & Kacper Spadło, 2023. "Research on Terrain Mobility of UGV with Hydrostatic Wheel Drive and Slip Control Systems," Energies, MDPI, vol. 16(19), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5669-:d:632073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.