IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5562-d629767.html
   My bibliography  Save this article

Model for 400 kV Transmission Line Power Loss Assessment Using the PMU Measurements

Author

Listed:
  • Ivan Pavičić

    (Croatian Transmission System Operator, HOPS, 10000 Zagreb, Croatia)

  • Ninoslav Holjevac

    (Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

  • Igor Ivanković

    (Croatian Transmission System Operator, HOPS, 10000 Zagreb, Croatia)

  • Dalibor Brnobić

    (Studio Elektronike Rijeka Ltd., 51000 Rijeka, Croatia)

Abstract

This paper presents an advanced model for monitoring losses on a 400 kV over-head transmission line (OHL) that can be used for measured data verification and loss assessment. Technical losses are unavoidable physical effects of energy transmission and can be reduced to acceptable levels, with a major share of technical losses on transmission lines being Joule losses. However, at 400 kV voltage levels, the influence of the electrical corona discharge effect and current leakage can have significant impact on power loss. This is especially visible in poor weather conditions, such as the appearance of fog, rain and snow. Therefore, loss monitoring is incorporated into exiting business process to provide transmission system operators (TSO) with the measure of losses and the accurate characterization of measured data. This paper presents an advanced model for loss characterization and assessment that uses phasor measurement unit (PMU) measurements and combines them with end-customer measurements. PMU measurements from the algorithm of differential protection are used to detect differential currents and angles, and this paper proposes further usage of these data for determining the corona losses. The collected data are further processed and used to calculate the amount of corona losses and provide accurate loss assessment and estimation. In each step of the model, cross verification of the measured and calculated data is performed in order to finally provide more accurate loss assessment which is incorporated into the current data acquisition and monitoring systems.

Suggested Citation

  • Ivan Pavičić & Ninoslav Holjevac & Igor Ivanković & Dalibor Brnobić, 2021. "Model for 400 kV Transmission Line Power Loss Assessment Using the PMU Measurements," Energies, MDPI, vol. 14(17), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5562-:d:629767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simões, Paulo Fernando Mahaz & Souza, Reinaldo Castro & Calili, Rodrigo Flora & Pessanha, José Francisco Moreira, 2020. "Analysis and short-term predictions of non-technical loss of electric power based on mixed effects models," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karol Makowiecki & Aleksander Lisowiec & Pawel Michalski & Marcin Habrych, 2022. "UTC Synchronized Signal Generation for Synchrophasors and Sampled Values Measurements," Energies, MDPI, vol. 15(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Leite & José Pessanha & Paulo Simões & Rodrigo Calili & Reinaldo Souza, 2020. "A Stochastic Frontier Model for Definition of Non-Technical Loss Targets," Energies, MDPI, vol. 13(12), pages 1-20, June.
    2. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Cardoso de Mendonça, Mário Jorge & Pereira, Amaro Olimpio & Medrano, Luis Alberto & Pessanha, José Francisco M., 2021. "Analysis of electric distribution utilities efficiency levels by stochastic frontier in Brazilian power sector," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5562-:d:629767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.