IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5437-d626944.html
   My bibliography  Save this article

Zigzag Multirod Laser Beam Merging Approach for Brighter TEM 00 -Mode Solar Laser Emission from a Megawatt Solar Furnace

Author

Listed:
  • Hugo Costa

    (Centro de Física e Investigação Tecnológica (CEFITEC), Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal)

  • Joana Almeida

    (Centro de Física e Investigação Tecnológica (CEFITEC), Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal)

  • Dawei Liang

    (Centro de Física e Investigação Tecnológica (CEFITEC), Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal)

  • Miguel Catela

    (Centro de Física e Investigação Tecnológica (CEFITEC), Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal)

  • Dário Garcia

    (Centro de Física e Investigação Tecnológica (CEFITEC), Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal)

  • Bruno D. Tibúrcio

    (Centro de Física e Investigação Tecnológica (CEFITEC), Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal)

  • Cláudia R. Vistas

    (Centro de Física e Investigação Tecnológica (CEFITEC), Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal)

Abstract

An alternative multirod solar laser end-side-pumping concept, based on the megawatt solar furnace in France, is proposed to significantly improve the TEM 00 -mode solar laser output power level and its beam brightness through a novel zigzag beam merging technique. A solar flux homogenizer was used to deliver nearly the same pump power to multiple core-doped Nd:YAG laser rods within a water-cooled pump cavity through a fused silica window. Compared to the previous multibeam solar laser station concepts for the same solar furnace, the present approach can allow the production of high-power TEM 00 -mode solar laser beams with high beam brightness. An average of 1.06 W TEM 00 -mode laser power was numerically extracted from each of 1657 rods, resulting in a total of 1.8 kW. More importantly, by mounting 399 rods at a 30° angle of inclination and employing the beam merging technique, a maximum of 5.2 kW total TEM 00 -mode laser power was numerically extracted from 37 laser beams, averaging 141 W from each merged beam. The highest solar laser beam brightness figure of merit achieved was 148 W, corresponding to an improvement of 23 times in relation to the previous experimental record.

Suggested Citation

  • Hugo Costa & Joana Almeida & Dawei Liang & Miguel Catela & Dário Garcia & Bruno D. Tibúrcio & Cláudia R. Vistas, 2021. "Zigzag Multirod Laser Beam Merging Approach for Brighter TEM 00 -Mode Solar Laser Emission from a Megawatt Solar Furnace," Energies, MDPI, vol. 14(17), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5437-:d:626944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5437/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hugo Costa & Dawei Liang & Joana Almeida & Miguel Catela & Dário Garcia & Bruno D. Tibúrcio & Cláudia R. Vistas, 2022. "Seven-Rod Pumping Concept for Highly Stable Solar Laser Emission," Energies, MDPI, vol. 15(23), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5437-:d:626944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.