IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5428-d626615.html
   My bibliography  Save this article

Objective Analysis of Corrosion Pits in Offshore Wind Structures Using Image Processing

Author

Listed:
  • Waseem Khodabux

    (Department of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK)

  • Feargal Brennan

    (Department of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK)

Abstract

Corrosion in the marine environment is a complex mechanism. One of the most damaging forms of corrosion is pitting corrosion, which is difficult to design and inspect against. In the North Sea, multiple offshore wind structures have been deployed that are corroding from the inside out. One of the most notable corrosion mechanisms observed is pitting corrosion. This study addresses the lack of information both in the literature and the industry standards on the pitting corrosion profile for water depth from coupons deployed in the North Sea. Image processing was therefore conducted to extract the characteristics of the pit, which were defined as pit major length, minor length, area, aspect ratio, and count. The pit depth was measured using a pit gauge and the maximum pit depth was found to be 1.05 mm over 111 days of exposure. The goal of this paper is to provide both deterministic models and a statistical model of pit characteristics for water depth that can be used by wind farm operators and researchers to inform and simulate pits on structures based on the results of a real field experiment. As such, these models highlight the importance of adequate corrosion protection.

Suggested Citation

  • Waseem Khodabux & Feargal Brennan, 2021. "Objective Analysis of Corrosion Pits in Offshore Wind Structures Using Image Processing," Energies, MDPI, vol. 14(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5428-:d:626615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Waseem Khodabux & Paul Causon & Feargal Brennan, 2020. "Profiling Corrosion Rates for Offshore Wind Turbines with Depth in the North Sea," Energies, MDPI, vol. 13(10), pages 1-19, May.
    2. Adedipe, Oyewole & Brennan, Feargal & Kolios, Athanasios, 2016. "Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 141-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Martinez-Luengo & Mahmood Shafiee, 2019. "Guidelines and Cost-Benefit Analysis of the Structural Health Monitoring Implementation in Offshore Wind Turbine Support Structures," Energies, MDPI, vol. 12(6), pages 1-26, March.
    2. Thanh-Cao Le & Tran-Huu-Tin Luu & Huu-Phuong Nguyen & Trung-Hau Nguyen & Duc-Duy Ho & Thanh-Canh Huynh, 2022. "Piezoelectric Impedance-Based Structural Health Monitoring of Wind Turbine Structures: Current Status and Future Perspectives," Energies, MDPI, vol. 15(15), pages 1-31, July.
    3. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2022. "Life-extension classification of offshore wind assets using unsupervised machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    6. Zou, Guang & Kolios, Athanasios, 2022. "Quantifying the value of negative inspection outcomes in fatigue maintenance planning: Cost reduction, risk mitigation and reliability growth," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Shittu, Abdulhakim Adeoye & Mehmanparast, Ali & Hart, Phil & Kolios, Athanasios, 2021. "Comparative study between S-N and fracture mechanics approach on reliability assessment of offshore wind turbine jacket foundations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5428-:d:626615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.