IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5134-d617908.html
   My bibliography  Save this article

Reconfigurable Power Quality Analyzer Applied to Hardware-in-Loop Test Bench

Author

Listed:
  • Jahangir Badar

    (Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan)

  • Saddaqat Ali

    (Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan)

  • Hafiz Mudassir Munir

    (Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan)

  • Veer Bhan

    (Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan)

  • Syed Sabir Hussain Bukhari

    (Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
    School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06910, Korea)

  • Jong-Suk Ro

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06910, Korea
    Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06910, Korea)

Abstract

Integration of renewable energy resources and conventional grids leads to an increase in power quality issues. These power quality issues require different standards to be followed for accurate measurement and monitoring of various parameters of the power system. Conventional power quality analyzers (PQAs) are programmed to a particular standard and cannot be reconfigured by the end user. Therefore, conventional PQAs cannot meet the challenges of a rapidly changing grid. In this regard, a Compact RIO-based (CRIO-based) PQA was proposed, that can be easily reprogrammed and cope with the challenges faced by conventional PQAs. The salient features of the proposed PQA are a high processing speed, interactive interface, and high-quality data-storage capacity. Moreover, unlike conventional PQAs, the proposed PQA can be monitored remotely via the internet. In this research, a hardware-in-loop (HIL) simulation is used for performing the power-quality assessment in a systematic manner. Power quality indices such as apparent power, power factor, harmonics, frequency disturbance, inrush current, voltage sag and voltage swell are considered for validating the performance of the proposed PQA against the Fluke’s PQA 43-B.

Suggested Citation

  • Jahangir Badar & Saddaqat Ali & Hafiz Mudassir Munir & Veer Bhan & Syed Sabir Hussain Bukhari & Jong-Suk Ro, 2021. "Reconfigurable Power Quality Analyzer Applied to Hardware-in-Loop Test Bench," Energies, MDPI, vol. 14(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5134-:d:617908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo M. G. Rodrigues & Radu Godina & Miadreza Shafie-khah & João P. S. Catalão, 2017. "Experimental Results on a Wireless Wattmeter Device for the Integration in Home Energy Management Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jahangir Badar Soomro & Faheem Akhtar Chachar & Hafiz Mudassir Munir & Jamshed Ahmed Ansari & Amr S. Zalhaf & Mohammed Alqarni & Basem Alamri, 2022. "Efficient Hardware-in-the-Loop and Digital Control Techniques for Power Electronics Teaching," Sustainability, MDPI, vol. 14(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sébastien Bissey & Sébastien Jacques & Jean-Charles Le Bunetel, 2017. "The Fuzzy Logic Method to Efficiently Optimize Electricity Consumption in Individual Housing," Energies, MDPI, vol. 10(11), pages 1-24, October.
    2. Eduardo Viciana & Alfredo Alcayde & Francisco G. Montoya & Raul Baños & Francisco M. Arrabal-Campos & Antonio Zapata-Sierra & Francisco Manzano-Agugliaro, 2018. "OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer," Sustainability, MDPI, vol. 10(11), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5134-:d:617908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.