IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5127-d617703.html
   My bibliography  Save this article

Integration of Classical Mathematical Modeling with an Artificial Neural Network for the Problems with Limited Dataset

Author

Listed:
  • Szymon Buchaniec

    (AGH University of Science and Technology, 30 Mickiewicza Ave., 30059 Cracow, Poland)

  • Marek Gnatowski

    (AGH University of Science and Technology, 30 Mickiewicza Ave., 30059 Cracow, Poland)

  • Grzegorz Brus

    (AGH University of Science and Technology, 30 Mickiewicza Ave., 30059 Cracow, Poland)

Abstract

One of the most common problems in science is to investigate a function describing a system. When the estimate is made based on a classical mathematical model (white-box), the function is obtained throughout solving a differential equation. Alternatively, the prediction can be made by an artificial neural network (black-box) based on trends found in past data. Both approaches have their advantages and disadvantages. Mathematical models were seen as more trustworthy as their prediction is based on the laws of physics expressed in the form of mathematical equations. However, the majority of existing mathematical models include different empirical parameters, and both approaches inherit inevitable experimental errors. Simultaneously, the approximation of neural networks can reproduce the solution exceptionally well if fed sufficient data. The difference is that an artificial neural network requires big data to build its accurate approximation, whereas a typical mathematical model needs several data points to estimate an empirical constant. Therefore, the common problem that developers meet is the inaccuracy of mathematical models and artificial neural networks. Another common challenge is the mathematical models’ computational complexity or lack of data for a sufficient precision of the artificial neural networks. Here we analyze a grey-box solution in which an artificial neural network predicts just a part of the mathematical model, and its weights are adjusted based on the mathematical model’s output using the evolutionary approach to avoid overfitting. The performance of the grey-box model is statistically compared to a Dense Neural Network on benchmarking functions. With the use of Shaffer procedure, it was shown that the grey-box approach performs exceptionally well when the overall complexity of a problem is properly distributed with the mathematical model and the Artificial Neural Network. The obtained calculation results indicate that such an approach could increase precision and limit the dataset required for learning. To show the applicability of the presented approach, it was employed in modeling of the electrochemical reaction in the Solid Oxide Fuel Cell’s anode. Implementation of a grey-box model improved the prediction in comparison to the typically used methodology.

Suggested Citation

  • Szymon Buchaniec & Marek Gnatowski & Grzegorz Brus, 2021. "Integration of Classical Mathematical Modeling with an Artificial Neural Network for the Problems with Limited Dataset," Energies, MDPI, vol. 14(16), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5127-:d:617703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maciej Chalusiak & Weronika Nawrot & Szymon Buchaniec & Grzegorz Brus, 2021. "Swarm Intelligence-Based Methodology for Scanning Electron Microscope Image Segmentation of Solid Oxide Fuel Cell Anode," Energies, MDPI, vol. 14(11), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szymon Buchaniec & Marek Gnatowski & Hiroshi Hasegawa & Grzegorz Brus, 2023. "A Surrogate Model of the Butler-Volmer Equation for the Prediction of Thermodynamic Losses of Solid Oxide Fuel Cell Electrode," Energies, MDPI, vol. 16(15), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aswin Balasubramanian & Floran Martin & Md Masum Billah & Osaruyi Osemwinyen & Anouar Belahcen, 2021. "Application of Surrogate Optimization Routine with Clustering Technique for Optimal Design of an Induction Motor," Energies, MDPI, vol. 14(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5127-:d:617703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.