IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5001-d614690.html
   My bibliography  Save this article

Optimal Control of Hydrostatic Drive Wind Turbines for Improved Power Output in Low Wind-Speed Regions

Author

Listed:
  • Ammar E. Ali

    (Department of Mechanical & Energy Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA)

  • Majid Deldar

    (Bosch Rexroth Corporation, Greenville, SC 29644, USA)

  • Sohel Anwar

    (Department of Mechanical & Energy Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA)

Abstract

World wind energy output is steadily increasing in both production scale and capacity of harvesting wind. Hydrostatic transmission systems (HTSs) have been used mostly in offshore wind turbine applications. However, their potential has not been fully utilized in onshore wind turbines, partially due to concerns related to hydraulic losses. In our prior work, it was shown that the annual energy production from a hydrostatic wind turbine can match or exceed that of a mechanical drive wind turbine with appropriate optimal control techniques. In this paper, we present an optimal control technique that can further improve energy production of a hydrostatic wind turbine, particularly in low speed regions. Here, the overall loss equation of the HTS is developed and used as a cost function to be minimized with respect to system model dynamics. The overall loss function includes the losses due to both the aerodynamic efficiencies and the hydrostatic efficiencies of the motor and pump. A nonlinear model of HST is considered for the drive train. Optimal control law was derived by minimizing the overall loss. Both unconstrained and constrained optimization using Pontryagin’s minimum principle were utilized to derive two distinct control laws for the motor displacement. Simulation results showed that both the controllers were able to increase power output with the unconstrained optimization offering better results for the HTS wind turbine in the low speed regions (3–8 m/s).

Suggested Citation

  • Ammar E. Ali & Majid Deldar & Sohel Anwar, 2021. "Optimal Control of Hydrostatic Drive Wind Turbines for Improved Power Output in Low Wind-Speed Regions," Energies, MDPI, vol. 14(16), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5001-:d:614690
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sourav Pramanik & Sohel Anwar, 2020. "Look Ahead Based Control Strategy for Hydro-Static Drive Wind Turbine Using Dynamic Programming," Energies, MDPI, vol. 13(20), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biswaranjan Mohanty & Kim A. Stelson, 2022. "Dynamics and Control of an Energy-Efficient, Power-Regenerative, Hydrostatic Wind Turbine Dynamometer," Energies, MDPI, vol. 15(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andriy Chaban & Marek Lis & Andrzej Szafraniec & Vitaliy Levoniuk, 2022. "An Application of the Hamilton–Ostrogradsky Principle to the Modeling of an Asymmetrically Loaded Three-Phase Power Line," Energies, MDPI, vol. 15(21), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5001-:d:614690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.