IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4902-d612237.html
   My bibliography  Save this article

Modeling and Performance Assessment of the Split-Pi Used as a Storage Converter in All the Possible DC Microgrid Scenarios. Part I: Theoretical Analysis

Author

Listed:
  • Massimiliano Luna

    (Istituto di Ingegneria del Mare (INM), Consiglio Nazionale delle Ricerche (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy)

  • Antonino Sferlazza

    (Dipartimento di Ingegneria (DI), Università degli Studi di Palermo, Viale delle Scienze ed.10, 90128 Palermo, Italy)

  • Angelo Accetta

    (Istituto di Ingegneria del Mare (INM), Consiglio Nazionale delle Ricerche (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy)

  • Maria Carmela Di Piazza

    (Istituto di Ingegneria del Mare (INM), Consiglio Nazionale delle Ricerche (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy)

  • Giuseppe La Tona

    (Istituto di Ingegneria del Mare (INM), Consiglio Nazionale delle Ricerche (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy)

  • Marcello Pucci

    (Istituto di Ingegneria del Mare (INM), Consiglio Nazionale delle Ricerche (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy)

Abstract

The integration of an electrical storage system (ESS) into a DC microgrid using a bidirectional DC/DC converter provides substantial benefits but requires careful design. Among such converter topologies, the Split-pi converter presents several merits at the cost of non-isolated operation. However, the few works in the literature on the Split-pi presented only closed-loop control with a single control loop; furthermore, they neglected the reactive components’ parasitic resistances and did not perform any experimental validation. This work aimed at investigating the use of the Split-pi converter as a power interface between an ESS and a DC microgrid. Five typical microgrid scenarios are presented, where each of which requires a specific state-space model and a suitable control scheme for the converter to obtain high performance. In this study, two different state-space models of the converter that consider the parasitic elements are presented, the control schemes are discussed, and criteria for designing the controllers are also given. Several simulations, as well as experimental tests on a prototype realized in the lab, were performed to validate the study. Both the simulation and experimental results will be presented in part II of this work. The proposed approach has general validity and can also be followed when other bidirectional DC/DC converter topologies are employed to interface an ESS with a DC microgrid.

Suggested Citation

  • Massimiliano Luna & Antonino Sferlazza & Angelo Accetta & Maria Carmela Di Piazza & Giuseppe La Tona & Marcello Pucci, 2021. "Modeling and Performance Assessment of the Split-Pi Used as a Storage Converter in All the Possible DC Microgrid Scenarios. Part I: Theoretical Analysis," Energies, MDPI, vol. 14(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4902-:d:612237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4902/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4902/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Luna & Antonino Sferlazza & Angelo Accetta & Maria Carmela Di Piazza & Giuseppe La Tona & Marcello Pucci, 2021. "Modeling and Performance Assessment of the Split-Pi Used as a Storage Converter in All the Possible DC Microgrid Scenarios. Part II: Simulation and Experimental Results," Energies, MDPI, vol. 14(18), pages 1-22, September.
    2. Geethanjali Subramaniyan & Vijayakumar Krishnasamy & Jagabar Sathik Mohammed, 2022. "Modeling and Design of Split-Pi Converter," Energies, MDPI, vol. 15(15), pages 1-23, August.
    3. Massimiliano Luna & Antonino Sferlazza & Angelo Accetta & Maria Carmela Di Piazza & Giuseppe La Tona & Marcello Pucci, 2023. "Modeling and Experimental Validation of a Voltage-Controlled Split-Pi Converter Interfacing a High-Voltage ESS with a DC Microgrid," Energies, MDPI, vol. 16(4), pages 1-23, February.
    4. Massimiliano Luna, 2022. "High-Efficiency and High-Performance Power Electronics for Power Grids and Electrical Drives," Energies, MDPI, vol. 15(16), pages 1-6, August.
    5. Lin Wang & Anke Xue, 2021. "Equivalent Modeling of Microgrids Based on Optimized Broad Learning System," Energies, MDPI, vol. 14(23), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4902-:d:612237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.