IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4786-d609723.html
   My bibliography  Save this article

Stability Domain Analysis and Enhancement of Squirrel Cage Induction Generator Wind Turbines in Weak Grids

Author

Listed:
  • Jonathan Devadason

    (School of Electrical and Computer Engineering, The University of Oklahoma, Devon Energy Hall, 110 W. Boyd St., Norman, OK 73019, USA)

  • Paul S. Moses

    (School of Electrical and Computer Engineering, The University of Oklahoma, Devon Energy Hall, 110 W. Boyd St., Norman, OK 73019, USA)

  • Mohammad A. S. Masoum

    (Department of Engineering, Utah Valley University, 800 West University Parkway, Orem, UT 84058, USA)

Abstract

There are significant concerns regarding the stability of increased wind power generation in weak power grids. This paper investigates and improves the stability of Wind Turbine Squirrel Cage Induction Generators (WT-SCIGs) with series compensation and weak interconnections to the power grid. Detailed time-domain and state-space modeling have revealed new bifurcations and oscillatory modes for a WT-SCIG connected radially to a weak grid through a series compensated line. The stability domain analyses are carried out by computing bifurcations in the system by analyzing eigenvalues of the linearized system. The analyses demonstrate for the first time how the degree of compensation at which the Hopf bifurcation occurs depends on the X / R ratio of the line, operating slip of the induction generator, and voltage regulator parameters as well as the time delays in measurements. A new damping controller is proposed, which greatly improves the dynamic stability of the WT-SCIG and eliminates destructive Hopf bifurcations in weak grids for a wide range of series compensation. This allows for a much larger percentage of series compensation than what is usually possible, while avoiding instabilities, thereby maximizing the power transfer capability.

Suggested Citation

  • Jonathan Devadason & Paul S. Moses & Mohammad A. S. Masoum, 2021. "Stability Domain Analysis and Enhancement of Squirrel Cage Induction Generator Wind Turbines in Weak Grids," Energies, MDPI, vol. 14(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4786-:d:609723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengbing He & Dakang Sun & Lei Song & Li Ma, 2019. "Analysis of Subsynchronous Resonance Characteristics and Influence Factors in a Series Compensated Transmission System," Energies, MDPI, vol. 12(17), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adolfo Dannier & Emanuele Fedele & Ivan Spina & Gianluca Brando, 2022. "Doubly-Fed Induction Generator (DFIG) in Connected or Weak Grids for Turbine-Based Wind Energy Conversion System," Energies, MDPI, vol. 15(17), pages 1-5, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide del Giudice & Federico Bizzarri & Samuele Grillo & Daniele Linaro & Angelo Maurizio Brambilla, 2022. "Impact of Passive-Components’ Models on the Stability Assessment of Inverter-Dominated Power Grids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    2. Yaozhen Han & Shuzhen Li & Cuiqi Du, 2020. "Adaptive Higher-Order Sliding Mode Control of Series-Compensated DFIG-Based Wind Farm for Sub-Synchronous Control Interaction Mitigation," Energies, MDPI, vol. 13(20), pages 1-21, October.
    3. Vijay Mohale & Thanga Raj Chelliah, 2022. "Impact of Fixed/Variable Speed Hydro, Wind, and Photovoltaic on Sub-Synchronous Torsional Oscillation—A Review," Sustainability, MDPI, vol. 15(1), pages 1-28, December.
    4. Lorenzo Bongini & Rosa Anna Mastromauro & Daniele Sgrò & Fabrizio Malvaldi, 2020. "Electrical Damping Assessment and Sensitivity Analysis of a Liquefied Natural Gas Plant: Experimental Validation," Energies, MDPI, vol. 13(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4786-:d:609723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.