IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4595-d604212.html
   My bibliography  Save this article

Integrating Machine/Deep Learning Methods and Filtering Techniques for Reliable Mineral Phase Segmentation of 3D X-ray Computed Tomography Images

Author

Listed:
  • Parisa Asadi

    (Department of Civil & Environmental Engineering, Auburn University, Auburn, AL 36830, USA)

  • Lauren E. Beckingham

    (Department of Civil & Environmental Engineering, Auburn University, Auburn, AL 36830, USA)

Abstract

X-ray CT imaging provides a 3D view of a sample and is a powerful tool for investigating the internal features of porous rock. Reliable phase segmentation in these images is highly necessary but, like any other digital rock imaging technique, is time-consuming, labor-intensive, and subjective. Combining 3D X-ray CT imaging with machine learning methods that can simultaneously consider several extracted features in addition to color attenuation, is a promising and powerful method for reliable phase segmentation. Machine learning-based phase segmentation of X-ray CT images enables faster data collection and interpretation than traditional methods. This study investigates the performance of several filtering techniques with three machine learning methods and a deep learning method to assess the potential for reliable feature extraction and pixel-level phase segmentation of X-ray CT images. Features were first extracted from images using well-known filters and from the second convolutional layer of the pre-trained VGG16 architecture. Then, K-means clustering, Random Forest, and Feed Forward Artificial Neural Network methods, as well as the modified U-Net model, were applied to the extracted input features. The models’ performances were then compared and contrasted to determine the influence of the machine learning method and input features on reliable phase segmentation. The results showed considering more dimensionality has promising results and all classification algorithms result in high accuracy ranging from 0.87 to 0.94. Feature-based Random Forest demonstrated the best performance among the machine learning models, with an accuracy of 0.88 for Mancos and 0.94 for Marcellus. The U-Net model with the linear combination of focal and dice loss also performed well with an accuracy of 0.91 and 0.93 for Mancos and Marcellus, respectively. In general, considering more features provided promising and reliable segmentation results that are valuable for analyzing the composition of dense samples, such as shales, which are significant unconventional reservoirs in oil recovery.

Suggested Citation

  • Parisa Asadi & Lauren E. Beckingham, 2021. "Integrating Machine/Deep Learning Methods and Filtering Techniques for Reliable Mineral Phase Segmentation of 3D X-ray Computed Tomography Images," Energies, MDPI, vol. 14(15), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4595-:d:604212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4595/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuxu Li & Xiaojiang Liu & Yun Xiao & Yao Zhang & Xiaomei Yang & Wenhai Zhang, 2022. "An Improved U-Net Segmentation Model That Integrates a Dual Attention Mechanism and a Residual Network for Transformer Oil Leakage Detection," Energies, MDPI, vol. 15(12), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4595-:d:604212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.