IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4359-d597313.html
   My bibliography  Save this article

Multiparameter Optimization of Thrust Vector Control with Transverse Injection of a Supersonic Underexpanded Gas Jet into a Convergent Divergent Nozzle

Author

Listed:
  • Vladislav Emelyanov

    (Department of Plasma and Gas Dynamics and Thermal Engineering, Baltic State Technical University, 190005 St. Petersburg, Russia)

  • Mikhail Yakovchuk

    (Department of Plasma and Gas Dynamics and Thermal Engineering, Baltic State Technical University, 190005 St. Petersburg, Russia)

  • Konstantin Volkov

    (Institute of Hydrodynamics and Control Processes, St. Petersburg State Marine Technical University, 190121 St. Petersburg, Russia
    Department of Mechanical Engineering, Faculty of Science, Engineering and Computing, Kingston University, London SW15 3DW, UK)

Abstract

The optimal design of the thrust vector control system of solid rocket motors (SRMs) is discussed. The injection of a supersonic underexpanded gas jet into the diverging part of the rocket engine nozzle is considered, and multiparameter optimization of the geometric shape of the injection nozzle and the parameters of jet injection into a supersonic flow is developed. The turbulent flow of viscous compressible gas in the main nozzle and injection system is simulated with the Reynolds-averaged Navier–Stokes (RANS) equations and shear stress transport (SST) turbulence model. An optimization procedure with the automatic generation of a block-structured mesh and conjugate gradient method is applied to find the optimal parameters of the problem of interest. Optimization parameters include the pressure ratio of the injected jet, the angle of inclination of the injection nozzle to the axis of the main nozzle, the distance of the injection nozzle from the throat of the main nozzle and the shape of the outlet section of the injection nozzle. The location of injection nozzle varies from 0.1 to 0.9 with respect to the length of the supersonic part of the nozzle; the angle of injection varies from 30 to 160 degrees; and the shape of the outlet section of the injection nozzle is an ellipse with an aspect ratio that varies from 0.1 to 1. The computed fluid flow in the combustion chamber is compared with experimental and computational results. The dependence of the thrust as a function of the injection parameters is obtained, and conclusions are made about the effects of the input parameters of the problem on the thrust coefficient.

Suggested Citation

  • Vladislav Emelyanov & Mikhail Yakovchuk & Konstantin Volkov, 2021. "Multiparameter Optimization of Thrust Vector Control with Transverse Injection of a Supersonic Underexpanded Gas Jet into a Convergent Divergent Nozzle," Energies, MDPI, vol. 14(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4359-:d:597313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jincheng Zhang & Zhenguo Wang & Mingbo Sun & Hongbo Wang & Chaoyang Liu & Jiangfei Yu, 2020. "Effect of the Backward Facing Step on a Transverse Jet in Supersonic Crossflow," Energies, MDPI, vol. 13(16), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Paeres & Christian Lagares & Guillermo Araya, 2022. "Assessment of Turbulence Models over a Curved Hill Flow with Passive Scalar Transport," Energies, MDPI, vol. 15(16), pages 1-32, August.
    2. Fan Li & Mingbo Sun & Zun Cai & Yong Chen & Yongchao Sun & Fei Li & Jiajian Zhu, 2020. "Effects of Additional Cavity Floor Injection on the Ignition and Combustion Processes in a Mach 2 Supersonic Flow," Energies, MDPI, vol. 13(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4359-:d:597313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.