IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4342-d596922.html
   My bibliography  Save this article

Effects of Bent Outlet on Characteristics of a Fluidic Oscillator with and without External Flow

Author

Listed:
  • Nam-Hun Kim

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea)

  • Kwang-Yong Kim

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea)

Abstract

A fluidic oscillator with a bent outlet nozzle was investigated to find the effects of the bending angle on the characteristics of the oscillator with and without external flow. Unsteady aerodynamic analyses were performed on the internal flow of the oscillator with two feedback channels and the interaction between oscillator jets and external flow on a NACA0015 airfoil. The analyses were performed using three-dimensional unsteady Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model. The bending angle was tested in a range of 0–40°. The results suggest that the jet frequency increases with the bending angle for high mass flow rates, but at a bending angle of 40°, the oscillation of the jet disappears. The pressure drop through the oscillator increases with the bending angle for positive bending angles. The external flow generally suppresses the jet oscillation, and the effect of external flow on the frequency increases as the bending angle increases. The effect of external flow on the peak velocity ratio at the exit is dominant in the cases where the jet oscillation disappears.

Suggested Citation

  • Nam-Hun Kim & Kwang-Yong Kim, 2021. "Effects of Bent Outlet on Characteristics of a Fluidic Oscillator with and without External Flow," Energies, MDPI, vol. 14(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4342-:d:596922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4342/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur S. Bartosik, 2022. "Numerical Heat Transfer and Fluid Flow: A Review of Contributions to the Special Issue," Energies, MDPI, vol. 15(8), pages 1-8, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4342-:d:596922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.