IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4289-d595213.html
   My bibliography  Save this article

Impedance Matching Method for 6.78 MHz Class-E2-Based WPT System

Author

Listed:
  • Yi Zhang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Yue Feng

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Sheng Liu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Jiande Wu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Xiangning He

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

The performance of a conventional Class-E2-based WPT system is sensitive to system parameters such as the coil coupling coefficient and load variation. System efficiency decreases rapidly when the coil coupling coefficient and load deviate from their optimum values. In this paper, an impedance matching method and a design procedure are proposed to maintain high system efficiency over a wider range of coupling coefficient and load variations. The load-pull technique is adopted to identify the high-efficiency load region of a Class-E power amplifier (PA), and a double-L-type impedance matching network (IMN) is proposed to transform the load impedance of a Class-E PA into a high-efficiency working region. Compared to a single L-type IMN, a double-L-type IMN is more flexible and has better tuning performance. A 6.78 MHz Class-E2-based WPT system was built to validate the proposed design method. The experimental results show that the proposed double-L-type IMN can significantly attenuate the decline in Class-E PA efficiency when system parameters dynamically change. With a double-L-type IMN, the WPT system could maintain high efficiency (over 55%) under a wider range of coil coupling coefficient and load variations. The peak system efficiency reached 83.2% with 13.7 W output power. The impedance matching method and design procedure in this paper could provide a practical solution for building a high-efficiency WPT system with strong robustness.

Suggested Citation

  • Yi Zhang & Yue Feng & Sheng Liu & Jiande Wu & Xiangning He, 2021. "Impedance Matching Method for 6.78 MHz Class-E2-Based WPT System," Energies, MDPI, vol. 14(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4289-:d:595213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4289/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong-Wook Seo, 2021. "Wireless Power Transfer and RF Technologies," Energies, MDPI, vol. 14(24), pages 1-3, December.
    2. Desheng Zhang & Run Min & Zhigang Liu & Qiaoling Tong & Qiao Zhang & Ting Wu & Ming Zhang & Aosong Zhou, 2022. "Reducing Circling Currents in a VHF Class Φ 2 Inverter Based on a Fully Analytical Loss Model," Energies, MDPI, vol. 15(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4289-:d:595213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.