IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3842-d582556.html
   My bibliography  Save this article

Adaptive Power Flow Prediction Based on Machine Learning

Author

Listed:
  • Jingyeong Park

    (School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea)

  • Daisuke Kodaira

    (Department of Electrical Engineering, Tokyo University of Science, Tokyo 162-8601, Japan)

  • Kofi Afrifa Agyeman

    (School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea)

  • Taeyoung Jyung

    (Korea Electric Power Corporation Engineering & Construction (KEPCO E&C), Gimcheon 39660, Korea)

  • Sekyung Han

    (School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
    Department of Electrical Engineering, Kyungpook National University, Daegu 41566, Korea)

Abstract

Power flow analysis is an inevitable methodology in the planning and operation of the power grid. It has been performed for the transmission system, however, along with the penetration of the distributed energy resources, the target has been expanded to the distribution system as well. However, it is not easy to apply the conventional method to the distribution system since the essential information for the power flow analysis, say the impedance and the topology, are not available for the distribution system. To this end, this paper proposes an alternative method based on practically available parameters at the terminal nodes without the precedent information. Since the available information is different between high-voltage and low-voltage systems, we develop two various machine learning schemes. Specifically, the high-voltage model incorporates the slack node voltage, which can be practically obtained at the substation, and yields a time-invariant model. On the other hand, the low voltage model utilizes the deviation of voltages at each node for the power changes, subsequently resulting in a time-varying model. The performance of the suggested models is also verified using numerical simulations. The results are analyzed and compared with another power flow scheme for the distribution system that the authors suggested beforehand.

Suggested Citation

  • Jingyeong Park & Daisuke Kodaira & Kofi Afrifa Agyeman & Taeyoung Jyung & Sekyung Han, 2021. "Adaptive Power Flow Prediction Based on Machine Learning," Energies, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3842-:d:582556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karthikeyan Nainar & Florin Iov, 2020. "Smart Meter Measurement-Based State Estimation for Monitoring of Low-Voltage Distribution Grids," Energies, MDPI, vol. 13(20), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Alymov & Moshe Averbukh, 2024. "Monitoring Energy Flows for Efficient Electricity Control in Low-Voltage Smart Grids," Energies, MDPI, vol. 17(9), pages 1-17, April.
    2. Fabio Napolitano & Juan Diego Rios Penaloza & Fabio Tossani & Alberto Borghetti & Carlo Alberto Nucci, 2021. "Three-Phase State Estimation of a Low-Voltage Distribution Network with Kalman Filter," Energies, MDPI, vol. 14(21), pages 1-19, November.
    3. Karthikeyan Nainar & Florin Iov, 2021. "Three-Phase State Estimation for Distribution-Grid Analytics," Clean Technol., MDPI, vol. 3(2), pages 1-14, May.
    4. Ruipeng Guo & Lilan Dong & Hao Wu & Fangdi Hou & Chen Fang, 2021. "A Practical GERI-Based Method for Identifying Multiple Erroneous Parameters and Measurements Simultaneously," Energies, MDPI, vol. 14(12), pages 1-21, June.
    5. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3842-:d:582556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.