IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3824-d582080.html
   My bibliography  Save this article

Cascade-Type Pole-Zero Cancellation Output Voltage Regulator for DC/DC Boost Converters

Author

Listed:
  • Sung Hyun You

    (Department of Electronic Engineering, Chosun University, Gwangju 61452, Korea)

  • Koo Bonn

    (Department of Creative Convergence Engineering, Hanbat National University, Daejeon 341-58, Korea)

  • Dong Soo Kim

    (Department of Creative Convergence Engineering, Hanbat National University, Daejeon 341-58, Korea)

  • Seok-Kyoon Kim

    (Department of Creative Convergence Engineering, Hanbat National University, Daejeon 341-58, Korea)

Abstract

This paper presents a novel output voltage regulator in the cascade structure under the consideration of both the parameter and load uncertainties. It leads to the first-order closed-loop inner and outer loop dynamics in the low-pass filter form by the pole-zero cancellation through the active damping injection, which is the main contribution of this study. Moreover, it is proved that the active damping injection level determines the disturbance rejection capability of the closed-loop system. A 3-kW DC/DC boost converter confirms the actual advantages from these two contributions.

Suggested Citation

  • Sung Hyun You & Koo Bonn & Dong Soo Kim & Seok-Kyoon Kim, 2021. "Cascade-Type Pole-Zero Cancellation Output Voltage Regulator for DC/DC Boost Converters," Energies, MDPI, vol. 14(13), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3824-:d:582080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Li & Jinrui Tang & Xinze Wang & Binyu Xiong & Shenjun Zhan & Zilong Zhao & Hui Hou & Wanying Qi & Zhenhai Li, 2020. "Optimal Placement of IoT-Based Fault Indicator to Shorten Outage Time in Integrated Cyber-Physical Medium-Voltage Distribution Network," Energies, MDPI, vol. 13(18), pages 1-21, September.
    2. Ying-Chieh Chen & Liang-Rui Chen & Ching-Ming Lai & Yuan-Chih Lin & Ting-Jung Kuo, 2020. "Development of a DC-Side Direct Current Controlled Active Ripple Filter for Eliminating the Double-Line-Frequency Current Ripple in a Single-Phase DC/AC Conversion System," Energies, MDPI, vol. 13(18), pages 1-16, September.
    3. Kyunghwan Choi & Dong Soo Kim & Seok-Kyoon Kim, 2020. "Disturbance Observer-Based Offset-Free Global Tracking Control for Input-Constrained LTI Systems with DC/DC Buck Converter Applications," Energies, MDPI, vol. 13(16), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun Lim & Seok-Kyoon Kim & Yonghun Kim, 2021. "Active Damping Injection Output Voltage Control with Dynamic Current Cut-Off Frequency for DC/DC Buck Converters," Energies, MDPI, vol. 14(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun Lim & Seok-Kyoon Kim & Yonghun Kim, 2021. "Active Damping Injection Output Voltage Control with Dynamic Current Cut-Off Frequency for DC/DC Buck Converters," Energies, MDPI, vol. 14(20), pages 1-17, October.
    2. Chuanyu Zhang & Chuanxu Cao & Ruiqi Chen & Jiahui Jiang, 2023. "Three-Leg Quasi-Z-Source Inverter with Input Ripple Suppression for Renewable Energy Application," Energies, MDPI, vol. 16(11), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3824-:d:582080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.