IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3742-d580061.html
   My bibliography  Save this article

Study on the Effect of Helium on the Dielectric Strength of Medium-Voltage Vacuum Interrupters

Author

Listed:
  • Paweł Węgierek

    (Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland)

  • Michał Lech

    (Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland)

  • Damian Kostyła

    (Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland)

  • Czesław Kozak

    (Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland)

Abstract

This paper presents the results of a comparative analysis of the dielectric strength of disconnecting vacuum interrupters operating on air and helium. The breakdown voltage U d was measured in the pressure range from 8.0 × 10 −4 Pa to 3.0 × 10 1 Pa for air and from 8.0 × 10 −4 Pa to 7.0 × 10 2 Pa for helium, while varying the interelectrode distance from 1.0 to 5.0 mm. Dedicated laboratory workstations were used to determine the actual pressure values in the vacuum interrupters tested and to precisely measure and record the dielectric strength results of the test object. It was found that the helium-filled vacuum interrupter maintains its full dielectric strength in significantly larger pressure ranges, while the air-filled vacuum interrupter loses its insulating properties. Thus, it is possible to make vacuum interrupters based on the working medium associated with pure helium, with larger working pressure ratings. Under such conditions, it is easier to maintain the tightness of the device and to limit cut-off currents and overvoltages associated with vacuum switchgear.

Suggested Citation

  • Paweł Węgierek & Michał Lech & Damian Kostyła & Czesław Kozak, 2021. "Study on the Effect of Helium on the Dielectric Strength of Medium-Voltage Vacuum Interrupters," Energies, MDPI, vol. 14(13), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3742-:d:580061
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marek Florkowski & Jakub Furgał & Maciej Kuniewski & Piotr Pająk, 2020. "Overvoltage Impact on Internal Insulation Systems of Transformers in Electrical Networks with Vacuum Circuit Breakers," Energies, MDPI, vol. 13(23), pages 1-14, December.
    2. Abderrahmane Beroual & Abderrahmane (Manu) Haddad, 2017. "Recent Advances in the Quest for a New Insulation Gas with a Low Impact on the Environment to Replace Sulfur Hexafluoride (SF 6 ) Gas in High-Voltage Power Network Applications," Energies, MDPI, vol. 10(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Węgierek & Damian Kostyła & Michał Lech & Czesław Kozak & Alicja Zielonka, 2023. "Pressure Monitoring in Medium-Voltage Vacuum Interrupters," Energies, MDPI, vol. 16(18), pages 1-12, September.
    2. Michał Lech & Paweł Węgierek, 2022. "Breakdown Initiation and Electrical Strength of a Vacuum Insulating System in the Environment of Selected Noble Gases at AC Voltage," Energies, MDPI, vol. 15(3), pages 1-16, February.
    3. Paweł Węgierek & Damian Kostyła & Michał Lech, 2023. "Directions of Development of Diagnostic Methods of Vacuum Medium-Voltage Switchgear," Energies, MDPI, vol. 16(5), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillip Widger & Daniel Carr & Alistair Reid & Meirion Hills & Chris Stone & A. (Manu) Haddad, 2020. "Partial Discharge Measurements in a High Voltage Gas Insulated Transmission Line Insulated with CO 2," Energies, MDPI, vol. 13(11), pages 1-11, June.
    2. Sung-Wook Kim & Nam-Hoon Kim & Dong-Eon Kim & Tae-Han Kim & Dong-Hoon Jeong & Young-Hwan Chung & Gyung-Suk Kil, 2021. "Experimental Validation for Moving Particle Detection Using Acoustic Emission Method," Energies, MDPI, vol. 14(24), pages 1-12, December.
    3. Ezgi Guney & Okan Ozgonenel, 2021. "An Eco-Friendly Gas Insulated Transformer Design," Energies, MDPI, vol. 14(12), pages 1-18, June.
    4. Huseyin R. Hiziroglu, 2023. "A Special Issue: Electric Machinery and Transformers," Energies, MDPI, vol. 16(15), pages 1-3, July.
    5. Francis Boakye-Mensah & Nelly Bonifaci & Rachelle Hanna & Innocent Niyonzima & Igor Timoshkin, 2022. "Modelling of Positive Streamers in SF 6 Gas under Non-Uniform Electric Field Conditions: Effect of Electronegativity on Streamer Discharges," J, MDPI, vol. 5(2), pages 1-22, May.
    6. Ran Zhuo & Qi Chen & Dibo Wang & Mingli Fu & Ju Tang & Juntai Hu & Yanlei Jiang, 2019. "Compatibility between C 6 F 12 O–N 2 Gas Mixture and Metal Used in Medium-Voltage Switchgears," Energies, MDPI, vol. 12(24), pages 1-11, December.
    7. Maurizio Albano & A. Manu Haddad & Huw Griffiths & Paul Coventry, 2018. "Environmentally Friendly Compact Air-Insulated High-Voltage Substations," Energies, MDPI, vol. 11(9), pages 1-14, September.
    8. Phillip Widger & Abderrahmane (Manu) Haddad, 2018. "Evaluation of SF 6 Leakage from Gas Insulated Equipment on Electricity Networks in Great Britain," Energies, MDPI, vol. 11(8), pages 1-14, August.
    9. Mustafa Sezai Dincer & Suleyman Sungur Tezcan & Hidir Duzkaya, 2018. "Suppression of Electron Avalanches in Ultra-Dilute SF 6 -N 2 Mixtures Subjected to Time-Invariant Crossed Fields," Energies, MDPI, vol. 11(12), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3742-:d:580061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.