IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3610-d576647.html
   My bibliography  Save this article

Integration of Voltage Source Converters in Steady-State RMS Short-Circuit Analysis

Author

Listed:
  • Carlos Coelho Teixeira

    (Coimbra Institute of Engineering, Polytechnic of Coimbra, 3030-199 Coimbra, Portugal)

  • Helder Leite

    (Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

Abstract

Voltage source converters (VSCs) are self-commutated converters able to generate AC voltages with or without the support of an AC connecting grid. VSCs allow fast control of active and reactive powers in an independent way. VSCs also have black start capability. Their use in high-voltage direct current (HVDC) systems, comparative to the more mature current source converter (CSC)-based HVDC, offers faster active power flow control. In addition, VSCs provide flexible reactive power control, independent at each converter terminal. It is also useful when connecting DC sources to weak AC grids. Steady-state RMS analysis techniques are commonly used for early-stage analysis, for design purposes and for relaying. Sources interfaced through DC/AC or AC/DC/AC converters, opposite to conventional generators, are not well represented by electromotive forces (E) behind impedance models. A methodology to include voltage source converters (VSCs) in conventional RMS short-circuit analysis techniques is advanced in this work. It represents an iterative procedure inside general calculation techniques and can even be used by those with only basic power electronics knowledge. Results are compared to those of the commercial software package PSS ® CAPE to demonstrate the validity of the proposed rmsVSC algorithm.

Suggested Citation

  • Carlos Coelho Teixeira & Helder Leite, 2021. "Integration of Voltage Source Converters in Steady-State RMS Short-Circuit Analysis," Energies, MDPI, vol. 14(12), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3610-:d:576647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3610/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodolfo Araneo & Salvatore Celozzi & Stefano Lauria & Erika Stracqualursi & Gianfranco Di Lorenzo & Marco Graziani, 2022. "Recent Trends in Power Systems Modeling and Analysis," Energies, MDPI, vol. 15(23), pages 1-7, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3610-:d:576647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.