IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3392-d571409.html
   My bibliography  Save this article

Numerical Analysis of Transient Performance of Grounding Grid with Lightning Rod Installed on Multi-Grounded Frame

Author

Listed:
  • Zhuoran Liu

    (State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Weidong Shi

    (High Voltage Department, China Electric Power Research Institute, Beijing 100192, China)

  • Bo Zhang

    (State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

Abstract

In large substations, many lightning rods are installed on multi-grounded frames. The lightning rods, the frame, the grounding grid and the soil form a whole body, and the lightning current will be discharged from many grounding points. In this paper, based on the partial element equivalent circuit method, a numerical model, in the time domain, is developed to simulate the lightning-caused electromagnetic transients on the frame and the grounding grid. The model is verified by field testing and by comparison with commercial software. The model has several features: (1) it has a simple time domain form; (2) it is stable due to a staggered arrangement of space and time variables and an implicit difference scheme used, and (3) the dimension of the equations is relatively small because the unknown variables are divided into several groups, which are calculated one by one. With this method, the transient characteristics of the grounding grid with lightning rods on the frame are calculated, and the factors affecting the results are analyzed. It can be seen that although the frame causes the ground potential rise in an evenly distributed manner, compared with the situation in which the lightning strikes an independent lightning rod, the ground potential decrease rate near the main grounding point is almost the same because most of the current still enters the soil from the grounding electrode closest to the lightning strike. Therefore, even if there is a frame, the nearby facilities should take the same protective measures as in the case of an independent lightning rod. The ground conductors near the grounding points of the frame should be dense enough to reduce the potential gradient. The equipment should be kept at least 10 m away from the grounding point for lightning.

Suggested Citation

  • Zhuoran Liu & Weidong Shi & Bo Zhang, 2021. "Numerical Analysis of Transient Performance of Grounding Grid with Lightning Rod Installed on Multi-Grounded Frame," Energies, MDPI, vol. 14(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3392-:d:571409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3392/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdullah H. Moselhy & Abdelaziz M. Abdel-Aziz & Mahmoud Gilany & Ahmed Emam, 2020. "Impact of First Tower Earthing Resistance on Fast Front Back-Flashover in a 66 kV Transmission System," Energies, MDPI, vol. 13(18), pages 1-20, September.
    2. Guido Ala & Salvatore Favuzza & Elisa Francomano & Graziella Giglia & Gaetano Zizzo, 2018. "On the Distribution of Lightning Current among Interconnected Grounding Systems in Medium Voltage Grids," Energies, MDPI, vol. 11(4), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Aiello & Salvatore Alfonzetti & Santi Agatino Rizzo & Nunzio Salerno, 2019. "Thin Conductor Modelling Combined with a Hybrid Numerical Method to Evaluate the Transferred Potential from Isolated Grounding System," Energies, MDPI, vol. 12(7), pages 1-11, March.
    2. Donghui Luo & Yongxing Cao & Yu Zhang & Shijun Xie & Chenmeng Zhang & Shuping Cao, 2021. "Study on Structural Parameters and Analysis Method of Soil Successive Impulse Discharge Channel," Energies, MDPI, vol. 14(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3392-:d:571409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.