IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3344-d570238.html
   My bibliography  Save this article

Unified Power Converter Based on a Dual-Stator Permanent Magnet Synchronous Machine for Motor Drive and Battery Charging of Electric Vehicles

Author

Listed:
  • Delfim Pedrosa

    (School of Engineering, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal)

  • Vitor Monteiro

    (School of Engineering, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal)

  • Tiago J. C. Sousa

    (School of Engineering, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal)

  • Luis Machado

    (School of Engineering, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal)

  • Joao L. Afonso

    (School of Engineering, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal)

Abstract

An electric vehicle (EV) usually has two main power converters, namely one for the motor drive system and another for the battery-charging system. Considering the similarities between both converters, a new unified power converter for motor drive and battery charging of EVs is propounded in this paper. By using a single unified power converter, the cost, volume, and weight of the power electronics are reduced, thus also making possible a reduction in the final price of the EV. Moreover, the proposed unified power converter has the capability of bidirectional power flow. During operation in traction mode, the unified power converter controls motor driving and regenerative braking. Additionally, during operation in battery-charging mode, with the EV plugged into the electrical power grid, the unified power converter controls the power flow for slow or fast battery charging (grid-to-vehicle (G2V) mode), or for discharging of the batteries (vehicle-to-grid (V2G) mode). Specifically, this paper presents computer simulations and experimental validations for operation in both motor-driving and slow battery-charging mode (in G2V and V2G modes). It is demonstrated that the field-oriented control used in the traction system presents good performance for different values of mechanical load and that the battery-charging system operates with high levels of power quality, both in G2V and in V2G mode.

Suggested Citation

  • Delfim Pedrosa & Vitor Monteiro & Tiago J. C. Sousa & Luis Machado & Joao L. Afonso, 2021. "Unified Power Converter Based on a Dual-Stator Permanent Magnet Synchronous Machine for Motor Drive and Battery Charging of Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3344-:d:570238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3344/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3344/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vitor Monteiro & Jose Afonso & Tiago Sousa & Luiz Cardoso & Jose Gabriel Pinto & Joao Luiz Afonso, 2019. "Vehicle Electrification: Technologies, Challenges, and a Global Perspective for Smart Grids," Chapters, in: Taha Selim Ustun (ed.), Innovation in Energy Systems - New Technologies for Changing Paradigms, IntechOpen.
    2. Joao L. Afonso & Luiz A. Lisboa Cardoso & Delfim Pedrosa & Tiago J. C. Sousa & Luis Machado & Mohamed Tanta & Vitor Monteiro, 2020. "A Review on Power Electronics Technologies for Electric Mobility," Energies, MDPI, vol. 13(23), pages 1-61, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vitor Monteiro & Joao L. Afonso, 2022. "Power Electronics Technologies and Applicationsfor EV Battery Charging Systems," Energies, MDPI, vol. 15(3), pages 1-4, January.
    2. Tiago J. C. Sousa & Delfim Pedrosa & Vitor Monteiro & Joao L. Afonso, 2022. "A Review on Integrated Battery Chargers for Electric Vehicles," Energies, MDPI, vol. 15(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joao L. Afonso & Luiz A. Lisboa Cardoso & Delfim Pedrosa & Tiago J. C. Sousa & Luis Machado & Mohamed Tanta & Vitor Monteiro, 2020. "A Review on Power Electronics Technologies for Electric Mobility," Energies, MDPI, vol. 13(23), pages 1-61, December.
    2. Tiago J. C. Sousa & Delfim Pedrosa & Vitor Monteiro & Joao L. Afonso, 2022. "A Review on Integrated Battery Chargers for Electric Vehicles," Energies, MDPI, vol. 15(8), pages 1-27, April.
    3. Armel Asongu Nkembi & Paolo Cova & Emilio Sacchi & Emanuele Coraggioso & Nicola Delmonte, 2023. "A Comprehensive Review of Power Converters for E-Mobility," Energies, MDPI, vol. 16(4), pages 1-28, February.
    4. Mohamed Tanta & Jose Cunha & Luis A. M. Barros & Vitor Monteiro & José Gabriel Oliveira Pinto & Antonio P. Martins & Joao L. Afonso, 2021. "Experimental Validation of a Reduced-Scale Rail Power Conditioner Based on Modular Multilevel Converter for AC Railway Power Grids," Energies, MDPI, vol. 14(2), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3344-:d:570238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.