IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3278-d568497.html
   My bibliography  Save this article

Additive Manufacturing and Performance of E-Type Transformer Core

Author

Listed:
  • Hans Tiismus

    (Institute of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Ants Kallaste

    (Institute of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Anouar Belahcen

    (Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland)

  • Anton Rassolkin

    (Institute of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Toomas Vaimann

    (Institute of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Payam Shams Ghahfarokhi

    (Institute of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia
    Department of Electrical Machines and Apparatus, Riga Technical University, Kaļķu iela 1, LV-1658 Riga, Latvia)

Abstract

Additive manufacturing of ferromagnetic materials for electrical machine applications is maturing. In this work, a full E-type transformer core is printed, characterized, and compared in terms of performance with a conventional Goss textured core. For facilitating a modular winding and eddy current loss reduction, the 3D printed core is assembled from four novel interlocking components, which structurally imitate the E-type core laminations. Both cores are compared at approximately their respective optimal working conditions, at identical magnetizing currents. Due to the superior magnetic properties of the Goss sheet conventional transformer core, 10% reduced efficiency (from 80.5% to 70.1%) and 34% lower power density (from 59 VA/kg to 39 VA/kg) of the printed transformer are identified at operating temperature. The first prototype transformer core demonstrates the state of the art and initial optimization step for further development of additively manufactured soft ferromagnetic components. Further optimization of both the 3D printed material and core design are proposed for obtaining higher electrical performance for AC applications.

Suggested Citation

  • Hans Tiismus & Ants Kallaste & Anouar Belahcen & Anton Rassolkin & Toomas Vaimann & Payam Shams Ghahfarokhi, 2021. "Additive Manufacturing and Performance of E-Type Transformer Core," Energies, MDPI, vol. 14(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3278-:d:568497
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hans Tiismus & Ants Kallaste & Anouar Belahcen & Marek Tarraste & Toomas Vaimann & Anton Rassõlkin & Bilal Asad & Payam Shams Ghahfarokhi, 2021. "AC Magnetic Loss Reduction of SLM Processed Fe-Si for Additive Manufacturing of Electrical Machines," Energies, MDPI, vol. 14(5), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zaoli & Shang, Wen-Long & Zhang, Haoran & Garg, Harish & Han, Chunjia, 2022. "Assessing the green distribution transformer manufacturing process using a cloud-based q-rung orthopair fuzzy multi-criteria framework," Applied Energy, Elsevier, vol. 311(C).
    2. Anouar Belahcen & Armando Pires & Vitor Fernão Pires, 2023. "Magnetic Material Modelling of Electrical Machines," Energies, MDPI, vol. 16(2), pages 1-3, January.
    3. Toomas Vaimann & Ants Kallaste, 2023. "Additive Manufacturing of Electrical Machines—Towards the Industrial Use of a Novel Technology," Energies, MDPI, vol. 16(1), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniele Michieletto & Luigi Alberti & Filippo Zanini & Simone Carmignato, 2024. "Electromagnetic Characterization of Silicon–Iron Additively Manufactured Cores for Electric Machines," Energies, MDPI, vol. 17(3), pages 1-13, January.
    2. Toomas Vaimann & Ants Kallaste, 2023. "Additive Manufacturing of Electrical Machines—Towards the Industrial Use of a Novel Technology," Energies, MDPI, vol. 16(1), pages 1-10, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3278-:d:568497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.