IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3153-d564136.html
   My bibliography  Save this article

Non-Integer Order Approximation of a PID-Type Controller for Boost Converters

Author

Listed:
  • Allan G. S. Sánchez

    (CONACYT-Instituto Tecnológico de Celaya, Guanajuato 38010, Mexico)

  • Francisco J. Pérez-Pinal

    (Instituto Tecnológico de Celaya, Guanajuato 38010, Mexico)

  • Martín A. Rodríguez-Licea

    (CONACYT-Instituto Tecnológico de Celaya, Guanajuato 38010, Mexico)

  • Cornelio Posadas-Castillo

    (Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico)

Abstract

In this work, the voltage regulation of a boost converter is addressed. A non-integer order PID controller is proposed to deal with the closed-loop instability of the system. The average linear model of the converter is obtained through small-signal approximation. The resulting average linear model is considered divided into minimum and normalized non-minimum phase parts. This approach allows us to design a controller for the minimum phase part of the system, excluding temporarily the non-minimum phase one. A fractional-order PID controller approximation is suggested for the minimum phase part of the system. The proposal for the realization of the electrical controller is described and its implementation is used to corroborate its effectiveness when regulating the output voltage in the boost converter. The fractional-order PID approximation achieves regulation of the output voltage in the boost converter by exhibiting the iso-damping property and using a single control loop, which confirmed its effectiveness in terms of controlling non-minimum phase/variable parameter systems.

Suggested Citation

  • Allan G. S. Sánchez & Francisco J. Pérez-Pinal & Martín A. Rodríguez-Licea & Cornelio Posadas-Castillo, 2021. "Non-Integer Order Approximation of a PID-Type Controller for Boost Converters," Energies, MDPI, vol. 14(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3153-:d:564136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Yang & Yong Liao, 2019. "Discrete Sliding Mode Control Strategy for Start-Up and Steady-State of Boost Converter," Energies, MDPI, vol. 12(15), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongchao Niu & Hongyu Zhang & Jian Song, 2023. "Model Predictive Control of DC–DC Boost Converter Based on Generalized Proportional Integral Observer," Energies, MDPI, vol. 16(3), pages 1-16, January.
    2. Mario Villegas-Ruvalcaba & Kelly Joel Gurubel-Tun & Alberto Coronado-Mendoza, 2021. "Robust Inverse Optimal Control for a Boost Converter," Energies, MDPI, vol. 14(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3153-:d:564136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.