IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3070-d561804.html
   My bibliography  Save this article

Influence of Geometrical Changes in an Adiabatic Portion on the Heat Transfer Performance of a Two-Phase Closed Thermosiphon System

Author

Listed:
  • Mohanraj Chandran

    (Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Karur 639113, India)

  • Rajvikram Madurai Elavarasan

    (Clean and Resilient Energy Systems (CARES) Laboratory, Texas A&M University, Galveston, TX 77553, USA)

  • Ramesh Babu Neelakandan

    (Electrical and Electronics Engineering, M. Kumarasamy College of Engineering, Karur 639113, India)

  • Umashankar Subramaniam

    (Department of Communications and Networks, Renewable Energy Laboratory, College of Engineering, Prince Sultan University Riyadh, Riyadh 12435, Saudi Arabia)

  • Rishi Pugazhendhi

    (Department of Mechanical Engineering, Sri Venkateshwara College of Engineering, Chennai 602117, India)

Abstract

In this study, a modified non-uniform adiabatic section in a Two-Phase Closed Thermosiphon (TPCT) is proposed where the uniform section was replaced by convergent and divergent (C-D) sections. The heat transfer analysis was performed on the modified TPCT and their findings were compared with standard TPCT. The deionized water (DI) in the proportion of 30 vol% is filled in both the TPCTs. Further, the heat transfer performance analysis was carried out for three different orientations, such as 0°, 45° and 90°, and heat input was varied from 50 to 250 W. The effect of these geometrical changes and inclination angles on the heat transfer performance of both the TPCT were evaluated to compare the thermal resistance, wall temperature variation and heat transfer coefficient. The non-dimensional numbers such as Weber (WE), Bond (BO), Condensation (CO) and Kutateladze (KU) were investigated based on heat fluxes for both TPCTs. By introducing the convergent-divergent section nearer to the condenser, the pressure before and after the C-D section was increased and decreased. This enhances the heat transfer in the evaporator slightly up to 2% and 1.4% at horizontal and 45° orientation, respectively, in Non-Uniformed Adiabatic Section (NUAS) TPCT when compared to Uniformed Adiabatic Section (UAS) TPCT. The thermal resistance of NUAS TPCT was reduced by up to 4.5% relative to UAS TPCT in horizontal and 45°. The results of the non-dimensional number also confirmed that NUAS TPCT provided better performance by enhancing 2% more pool boiling characteristics, interaction forces and condensate returns. Several factors such as gravity assistance, fluid accumulation, pressure drop and thermal resistance exert an influence on the heat transfer performance of the proposed NUAS TPCT at various orientation angles. However, different type of cross-sectional variations subjected to orientation changes may also get influenced by several other parameters that in turn affect the heat transfer performance distinctly.

Suggested Citation

  • Mohanraj Chandran & Rajvikram Madurai Elavarasan & Ramesh Babu Neelakandan & Umashankar Subramaniam & Rishi Pugazhendhi, 2021. "Influence of Geometrical Changes in an Adiabatic Portion on the Heat Transfer Performance of a Two-Phase Closed Thermosiphon System," Energies, MDPI, vol. 14(11), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3070-:d:561804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3070/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarafraz, M.M. & Tlili, I. & Tian, Zhe & Bakouri, Mohsen & Safaei, Mohammad Reza, 2019. "Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Ching Jenq Ho & Heng-I Hsu & Tai-Ann Ho & Chi-Ming Lai, 2017. "Thermal Performance of a Vertical U-Shaped Thermosyphon Containing a Phase-Change Material Suspension Fluid," Energies, MDPI, vol. 10(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binglin Song & Guoying Meng & Wei Huang & Aiming Wang & Xiaohan Cheng & Jie Yang, 2024. "Experimental Investigation on Heat Transfer in Two-Phase Closed Thermosyphon Containing Non-Condensable Gas," Energies, MDPI, vol. 17(18), pages 1-15, September.
    2. Sankar Rangasamy & Raghavendra Rajan Vijaya Raghavan & Rajvikram Madurai Elavarasan & Padmanathan Kasinathan, 2023. "Energy Analysis of Flattened Heat Pipe with Nanofluids for Sustainable Electronic Cooling Applications," Sustainability, MDPI, vol. 15(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    2. Nabeel Abed & Imran Afgan & Andrea Cioncolini & Hector Iacovides & Adel Nasser, 2020. "Assessment and Evaluation of the Thermal Performance of Various Working Fluids in Parabolic Trough Collectors of Solar Thermal Power Plants under Non-Uniform Heat Flux Distribution Conditions," Energies, MDPI, vol. 13(15), pages 1-29, July.
    3. Bofeng Xu & Yue Yuan & Haoming Liu & Peng Jiang & Ziqi Gao & Xiang Shen & Xin Cai, 2020. "A Pitch Angle Controller Based on Novel Fuzzy-PI Control for Wind Turbine Load Reduction," Energies, MDPI, vol. 13(22), pages 1-16, November.
    4. Yi Ding & Qiang Guo & Wenyuan Guo & Wenxiao Chu & Qiuwang Wang, 2024. "Review of Recent Applications of Heat Pipe Heat Exchanger Use for Waste Heat Recovery," Energies, MDPI, vol. 17(11), pages 1-28, May.
    5. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air Conditioning Systems via Data Mining. Part II: A Detailed Case Study," Energies, MDPI, vol. 14(1), pages 1-22, December.
    6. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    7. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Alireza Esmaeilzadeh & Mahyar Silakhori & Nik Nazri Nik Ghazali & Hendrik Simon Cornelis Metselaar & Azuddin Bin Mamat & Mohammad Sajad Naghavi Sanjani & Soudeh Iranmanesh, 2020. "Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe," Energies, MDPI, vol. 13(24), pages 1-21, December.
    9. Habib Shoeibi & Azad Jarrahian & Mehdi Mehrpooya & Ehsanolah Assaerh & Mohsen Izadi & Fathollah Pourfayaz, 2022. "Mathematical Modeling and Simulation of a Compound Parabolic Concentrators Collector with an Absorber Tube," Energies, MDPI, vol. 16(1), pages 1-20, December.
    10. Huang, Wenbo & Chen, Juanwen & Cen, Jiwen & Cao, Wenjiong & Li, Zhibin & Li, Feng & Jiang, Fangming, 2022. "Heat extraction from hot dry rock by super-long gravity heat pipe: Effect of key parameters," Energy, Elsevier, vol. 248(C).
    11. Sankar Rangasamy & Raghavendra Rajan Vijaya Raghavan & Rajvikram Madurai Elavarasan & Padmanathan Kasinathan, 2023. "Energy Analysis of Flattened Heat Pipe with Nanofluids for Sustainable Electronic Cooling Applications," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    12. Yıldırım, Erdal & Yurddaş, Ali, 2021. "Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system," Renewable Energy, Elsevier, vol. 171(C), pages 1079-1096.
    13. Ching-Jenq Ho & Chau-Yang Huang & Chi-Ming Lai, 2021. "Heat Transfer by Natural Convection in a Square Enclosure Containing PCM Suspensions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    14. Hoseinzadeh, Siamak & Ghasemi, Mohammad Hadi & Heyns, Stephan, 2020. "Application of hybrid systems in solution of low power generation at hot seasons for micro hydro systems," Renewable Energy, Elsevier, vol. 160(C), pages 323-332.
    15. Anna Grzegórska & Piotr Rybarczyk & Valdas Lukoševičius & Joanna Sobczak & Andrzej Rogala, 2021. "Smart Asset Management for District Heating Systems in the Baltic Sea Region," Energies, MDPI, vol. 14(2), pages 1-25, January.
    16. Sun, Wen & Feng, Li & Abed, Azher M. & Sharma, Aman & Arsalanloo, Akbar, 2022. "Thermoeconomic assessment of a renewable hybrid RO/PEM electrolyzer integrated with Kalina cycle and solar dryer unit using response surface methodology (RSM)," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3070-:d:561804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.