IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3027-d560873.html
   My bibliography  Save this article

A Comparative Environmental Assessment of Heat Pumps and Gas Boilers towards a Circular Economy in the UK

Author

Listed:
  • Selman Sevindik

    (Energy Institute, Bartlett School Environment, Energy and Resources, University College London, London WC1E 6BT, UK)

  • Catalina Spataru

    (Energy Institute, Bartlett School Environment, Energy and Resources, University College London, London WC1E 6BT, UK)

  • Teresa Domenech Aparisi

    (Institute for Sustainable Resources, Bartlett School Environment, Energy and Resources, University College London, London WC1E 6BT, UK)

  • Raimund Bleischwitz

    (Institute for Sustainable Resources, Bartlett School Environment, Energy and Resources, University College London, London WC1E 6BT, UK)

Abstract

This research compares the potential environmental impacts of heat pumps with gas boilers and scenario analysis through utilising the life cycle approach. The study analyses the current situation with the baseline model and assesses future applications with Circular Economy (CE), Resource Efficiency (RE) and Limited Growth (LG) scenarios. Then, hybrid applications of low-carbon technologies and different manufacturing scenarios are investigated according to baseline and CE scenarios. Our results show that the use and manufacturing phases are responsible for 74% and 14% of all environmental impacts on average as expected. Even though the electricity mix of the UK has decarbonised substantially during the last decade, heat pumps still have higher lifetime impacts than gas boilers in all environmental categories except climate change impact. The carbon intensity of heat pumps is much lower than gas boilers with 0.111 and 0.097 kg CO 2 e for air source heat pumps and ground source heat pumps, whereas the boiler stands as 0.241 kg CO 2 e. Future scenarios offer significant reductions in most of the impact categories. The CE scenario has the highest potential with a 44% reduction for heat pumps and 27% for gas boilers on average. RE and LG scenarios have smaller potential than the CE scenario, relatively. However, several categories expect an increase in future scenarios such as freshwater ecotoxicity, marine ecotoxicity and metal depletion categories. High deployment of offshore wind farms will have a negative impact on these categories; therefore, a comprehensive approach through a market introduction programme should be provided at the beginning before shifting from one technology to another. The 50% Hybrid scenario results expect a reduction of 24% and 20% on average for ASHP and GSHP, respectively, in the baseline model. The reduction is much lower in the CE scenario, with only a 2% decrease for both heat pumps because of the reduction in heat demand in the future. These results emphasise that even though the importance of the use phase is significant in the baseline model, the remaining phases will play an important role to achieve Net-Zero targets in the future.

Suggested Citation

  • Selman Sevindik & Catalina Spataru & Teresa Domenech Aparisi & Raimund Bleischwitz, 2021. "A Comparative Environmental Assessment of Heat Pumps and Gas Boilers towards a Circular Economy in the UK," Energies, MDPI, vol. 14(11), pages 1-26, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3027-:d:560873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3027/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3027/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rokas Valancius & Rao Martand Singh & Andrius Jurelionis & Juozas Vaiciunas, 2019. "A Review of Heat Pump Systems and Applications in Cold Climates: Evidence from Lithuania," Energies, MDPI, vol. 12(22), pages 1-18, November.
    2. Greening, Benjamin & Azapagic, Adisa, 2012. "Domestic heat pumps: Life cycle environmental impacts and potential implications for the UK," Energy, Elsevier, vol. 39(1), pages 205-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamás Buday & Erika Buday-Bódi, 2023. "Reduction in CO 2 Emissions with Bivalent Heat Pump Systems," Energies, MDPI, vol. 16(7), pages 1-18, April.
    2. Viktoria Mannheim & Károly Nehéz & Salman Brbhan & Péter Bencs, 2023. "Primary Energy Resources and Environmental Impacts of Various Heating Systems Based on Life Cycle Assessment," Energies, MDPI, vol. 16(19), pages 1-23, October.
    3. Piotr Ciuman & Jan Kaczmarczyk & Małgorzata Jastrzębska, 2022. "Simulation Analysis of Heat Pumps Application for the Purposes of the Silesian Botanical Garden Facilities in Poland," Energies, MDPI, vol. 16(1), pages 1-19, December.
    4. Anna Mazzi & Jingzheng Ren, 2021. "Circular Economy in Low-Carbon Transition," Energies, MDPI, vol. 14(23), pages 1-2, December.
    5. Bayer, Daniel R. & Pruckner, Marco, 2024. "Data-driven heat pump retrofit analysis in residential buildings: Carbon emission reductions and economic viability," Applied Energy, Elsevier, vol. 373(C).
    6. Selman Sevindik & Catalina Spataru, 2022. "An Integrated Methodology for Scenarios Analysis of Low Carbon Technologies Uptake towards a Circular Economy: The Case of Orkney," Energies, MDPI, vol. 16(1), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    3. Gemina Quest & Rosalie Arendt & Christian Klemm & Vanessa Bach & Janik Budde & Peter Vennemann & Matthias Finkbeiner, 2022. "Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany," Energies, MDPI, vol. 15(16), pages 1-21, August.
    4. Chandan Swaroop Meena & Binju P Raj & Lohit Saini & Nehul Agarwal & Aritra Ghosh, 2021. "Performance Optimization of Solar-Assisted Heat Pump System for Water Heating Applications," Energies, MDPI, vol. 14(12), pages 1-17, June.
    5. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
    6. Mélanie Douziech & Romain Besseau & Raphaël Jolivet & Bianka Shoai‐Tehrani & Jean‐Yves Bourmaud & Guillaume Busato & Mathilde Gresset‐Bourgeois & Paula Pérez‐López, 2024. "Life cycle assessment of prospective trajectories: A parametric approach for tailor‐made inventories and its computational implementation," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 25-40, February.
    7. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    8. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    9. Roumpedakis, Tryfon C. & Kallis, George & Magiri-Skouloudi, Despina & Grimekis, Dimitrios & Karellas, Sotirios, 2020. "Life cycle analysis of ZEOSOL solar cooling and heating system," Renewable Energy, Elsevier, vol. 154(C), pages 82-98.
    10. Salimi, Mohammad & Faramarzi, Davoud & Hosseinian, Seyed Hossein & Gharehpetian, Gevork B., 2020. "Replacement of natural gas with electricity to improve seismic service resilience: An application to domestic energy utilities in Iran," Energy, Elsevier, vol. 200(C).
    11. Li, X. & Arbabi, H. & Bennett, G. & Oreszczyn, T. & Densley Tingley, D., 2022. "Net zero by 2050: Investigating carbon-budget compliant retrofit measures for the English housing stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    13. Akbulut, Ugur & Utlu, Zafer & Kincay, Olcay, 2016. "Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system," Energy, Elsevier, vol. 107(C), pages 502-522.
    14. Simon Rees & Robin Curtis, 2014. "National Deployment of Domestic Geothermal Heat Pump Technology: Observations on the UK Experience 1995–2013," Energies, MDPI, vol. 7(8), pages 1-40, August.
    15. Ristimäki, Miro & Säynäjoki, Antti & Heinonen, Jukka & Junnila, Seppo, 2013. "Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design," Energy, Elsevier, vol. 63(C), pages 168-179.
    16. Bayer, Daniel R. & Pruckner, Marco, 2024. "Data-driven heat pump retrofit analysis in residential buildings: Carbon emission reductions and economic viability," Applied Energy, Elsevier, vol. 373(C).
    17. Tierney, Michael, 2020. "Minimum exergy destruction from endoreversible and finite-time thermodynamics machines and their concomitant indirect energy," Energy, Elsevier, vol. 197(C).
    18. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    19. Aresti, Lazaros & Alvi, Maria Romana & Cecinato, Francesco & Fan, Tao & Halaj, Elzbieta & Li, Zili & Okhay, Olena & Poulsen, Soren Erbs & Quiroga, Sonia & Suarez, Cristina & Tang, Anh Minh & Valancius, 2024. "Energy geo-structures: A review of their integration with other sources and its limitations," Renewable Energy, Elsevier, vol. 230(C).
    20. Luo, Xiaojun & Oyedele, Lukumon O., 2022. "Integrated life-cycle optimisation and supply-side management for building retrofitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3027-:d:560873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.